Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 11(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37505589

ABSTRACT

The inhalation of natural nanoparticles (NPs) emitted from volcanic activity may be a risk to human health. However, the literature rarely reports the fate and response of NPs once in contact with lung fluids. In this work, we studied the particle size distribution of ashfall from Popocatépetl volcano, Mexico. The collected ashes (n = 5) were analyzed with scanning electron microscopy (SEM) to obtain the elemental composition and morphology, and to determine the size of the ash particles using ParticleMetric software (PMS). The PMS reported most of the ash to have submicrometric size (<1 µm) and an average equivalent circle of 2.72 µm. Moreover, to our knowledge, this study investigated for the first time the behavior of ash NPs at different times (0 to 24 h) while in contact with in vitro lung fluid, Gamble Solution (GS) and Artificial Lysosomal Fluid (ALF) using dynamic light scattering (DLS). We found a large variability in the hydrodynamic diameter, with values less than 1 nm and greater than 5 µm. Furthermore, aggregation and disaggregation processes were recognized in GS and ALF, respectively. The results of this study increase the knowledge of the interaction between NPs and lung fluids, particularly within the alveolar macrophage region.

2.
Environ Geochem Health ; 45(6): 3229-3250, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36197533

ABSTRACT

Oxidative stress (OS) associated with metals in urban dust has become a public health concern. Chronic diseases linked to general inflammation are particularly affected by OS. This research analyzes the spatial distribution of metals associated with OS, the urban dust´s oxidative potential (OP), and the occurrence of diseases whose treatments are affected by OS. We collected 70 urban dust samples during pre- and post-monsoon seasons to achieve this. We analyzed particle size distribution and morphology by scanning electron microscopy, as well as metal(loid)s by portable X-ray fluorescence, and OP of dust in artificial lysosomal fluid by using an ascorbic acid depletion assay. Our results show that the mean concentration of Fe, Pb, As, Cr, Cu, and V in pre-monsoon was 83,984.6, 98.4, 23.5, 165.8, 301.3, and 141.9 mg kg-1, while during post-monsoon was 50,638.8, 73.9, 16.7, 124.3, 178.9, and 133.5 mg kg-1, respectively. Impoverished areas with the highest presence of cardiovascular, cancer, diabetes, and respiratory diseases coincide with contaminated areas where young adults live. We identified significant differences in the OP between seasons. OP increases during the pre-monsoon (from 7.8 to 237.5 nmol AA min-1) compared to the post-monsoon season (from 1.6 to 163.2 nmol AA min-1). OP values are much higher than measured standards corresponding to contaminated soil and urban particulate matter, which means that additional sources beside metals cause the elevated OP. The results show no risk from chronic exposure to metals; however, our results highlight the importance of studying dust as an environmental factor that may potentially increase oxidative stress.


Subject(s)
Environmental Monitoring , Metals, Heavy , Young Adult , Humans , Environmental Monitoring/methods , Metals/analysis , Dust/analysis , Oxidative Stress , Chronic Disease , Metals, Heavy/toxicity , Metals, Heavy/analysis , Risk Assessment
3.
Sci Rep ; 12(1): 21166, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36477608

ABSTRACT

The active cone of La Fossa is a close conduit volcano characterized by solphataric activity, manifested by discharging fluids through fumaroles and soil degassing. Since 1978 several degassing crises have been observed and interpreted as early signals of volcanic unrests. Recently, from June 2021 to May 2022, we measured the changes in soils CO2 release to evaluating the level and duration of the actual exhaling crises. The CO2 output has been evaluated by surveys carried out in anomalously degassing areas, located both in the La Fossa cone summit area and in other peripheral zones, coupled to near-real time monitoring data acquired by three automated stations. The strong and deep input of volatiles released from an underlying magma batch modified the chemical composition of the shallow plumbing system, bringing the system to a higher level of CO2 total pressure. This work highlights that a geochemical networks of stations, located at some distance from the fumaroles release and/or from eruptive conduits, is useful and can be applied to characterizing and monitoring any other active volcanic system. This type of studies can be useful to contribute to forecast the next evolution of the studied systems.


Subject(s)
Carbon Dioxide , Italy
4.
Sci Total Environ ; 740: 140133, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32563880

ABSTRACT

Rare Earth Elements (REE; lanthanides and yttrium) are elements with high economic interest because they are critical elements for modern technologies. This study mainly focuses on the geochemical behavior of REE in hyperacid sulphate brines in volcanic-hydrothermal systems, where the precipitation of sulphate minerals occurs. Kawah Ijen lake, a hyperacid brine hosted in the Ijen caldera (Indonesia), was used as natural laboratory. ∑REE concentration in the lake water is high, ranging from 5.86 to 6.52 mg kg-1. The REE pattern of lake waters normalized to the average local volcanic rock is flat, suggesting isochemical dissolution. Minerals spontaneously precipitated in laboratory at 25 °C from water samples of Kawah Ijen were identified by XRD as gypsum. Microprobe analyses and the chemical composition of major constituents allow to identify possible other minerals precipitated: jarosite, Al-sulphate and Sr, Ba-sulphate. ∑REE concentration in minerals precipitated (mainly gypsum) range from 59.53 to 78.64 mg kg-1. The REE patterns of minerals precipitated normalized to the average local magmatic rock show enrichment in LREE. The REE distribution coefficient (KD), obtained from a ratio of its concentration in the minerals precipitated (mainly gypsum) and the lake water, shows higher values for LREE than HREE. KD-LREE/KD-HREE increases in the studied samples when the concentrations of BaO, MgO, Fe2O3, Al2O3, Na2O and the sum of total oxides (except SO3 and CaO) decrease in the solid phase. The presence of secondary minerals different than gypsum can be the cause of the distribution coefficient variations. High concentrations of REE in Kawah Ijen volcanic lake have to enhance the interest on these environments as possible REE reservoir, stimulating future investigations. The comparison of the KD calculated for REE after mineral precipitation (mainly gypsum) from Kawah Ijen and Poás hyperacid volcanic lakes allow to generalize that the gypsum precipitation removes the LREE from water.

5.
Sci Total Environ ; 716: 135564, 2020 May 10.
Article in English | MEDLINE | ID: mdl-31918910

ABSTRACT

Geothermal fluids and volcanic emissions are important sources of arsenic (As), resulting in elevated concentrations of As in ground-, surface-water and soil, which may adversely affect the environment. Arsenic originating from geothermal features and volcanic activities is common in Latin America forming a serious threat to the livelihoods of millions of people. This review attempts to provide a critical overview of the geochemistry of As originating from these sources in Latin America to understand what information exists about and what future research needs to be undertaken. This study evaluated 15 countries in Latin America. In total, 423 sites were characterized with As originating from geothermal sources, mostly related to present volcanic activity (0.001 < As<73 mg/L, mean: 36.5 mg/L) and the transboundary Guarani Aquifer System (0.001 < As<0.114 mg/L, mean: 0.06 mg/L). Many of the geothermal systems and volcanoes discussed in this study are close to densely populated cities, including Bogota, Managua, San José, Guatemala City and Mexico City, where total As concentrations in natural ground- and surface- water exceed the safe drinking water guideline of 0.01 mg/L, recommended by the World Health Organization (WHO). However, the wide geographical occurrence of As in geothermal fluids and volcanic emissions of this region is by far not fully understood, so that development of geographical maps based on geographic information system (GIS) is an urgent necessity to understand the real nature of the problem. The assessment of environmental risks and the potential impacts on human health both inadequate and scarce and hence, these gaps need to be addressed by future research. The present holistic assessment of As originating from geothermal features and volcanic emissions would be a driving force to formulate a plan for establishing a sustainable As mitigation in vulnerable areas of Latin America in the near future. An assessment of the geochemistry, mobility and distribution of As would augment the effectiveness of the plan.

6.
Sci Total Environ ; 687: 978-990, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31412501

ABSTRACT

Three cubic-meters of CO2-saturated water was injected into a subsurface fractured aquifer in a post-mined area, using a push-pull test protocol. Groundwater samples were collected before and after CO2-injection to quantify geochemical changes. CO2-injection initially reduced the pH of water from 7.3 to 5.7, led to the enrichment of major ions (Ca2+, Mg2+, and alkalinity), and dissolved trace metals (including Fe, Mn, As, and Zn) in the groundwater. Rare earth elements (REE) and yttrium concentrations were also measured in these samples before and after CO2 perturbation, to evaluate their behavior. An enrichment of total Y plus REE (REY) occurred. REY fractionation was observed with higher heavy REE (HREE) enrichment compared to light REE (LREE), and significant variations in La/Yb and Y/Ho ratios were observed following CO2 perturbation. Enrichment by a factor of three was observed for Y, Lu, and Tm, and by nearly one order of magnitude for Dy and Yb. A geochemical model was used to evaluate the amount of REE aqueous ions complexed throughout the experiment. Modeling of the results showed that speciation of dissolved REE with carbonate, along with desorption from iron oxyhydroxide surface were the main factors controlling REE behavior. This study increases an understanding of dissolved REE behavior in the environment, and the potential use for applying iron oxides for REE recovery from mine drainages. Furthermore, the description of REE fractionation patterns may assist in surveying CO2 geological storage sites, surveying underground waste disposal sites, and for understanding the formation of ore deposits and fluid inclusions in geological formations.

SELECTION OF CITATIONS
SEARCH DETAIL
...