Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 813511, 2022.
Article in English | MEDLINE | ID: mdl-35479633

ABSTRACT

Biosynthesis of gold nanoparticles (AuNPs) for antimicrobial and chemotherapeutic applications is a well-established process in microbial hosts such as bacterial, fungi, and plants. However, reports on AuNPs biosynthesis in mammalian cells are scarce. In this study, bovine aortic endothelial cells (BAECs) and bovine aortic smooth muscle cells (BASMCs) were examined for their ability to synthesize AuNPs in vitro. Cell culture conditions such as buffer selection, serum concentration, and HAuCl4 concentration were optimized before the biosynthesized AuNPs were characterized through visible spectrometry, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared (FTIR) spectroscopy. BAECs and BASMC produced small, spherical AuNPs that are semi-crystalline with a similar diameter (23 ± 2 nm and 23 ± 4 nm). Hydrogen peroxide pretreatment increased AuNPs synthesis, suggesting that antioxidant enzymes may reduce Au3+ ions as seen in microbial cells. However, buthionine sulfoximine inhibition of glutathione synthesis, a key regulator of oxidative stress, failed to affect AuNPs generation. Taken together, these results show that under the right synthesis conditions, non-tumor cell lines can produce detectable concentrations of AuNPs in vitro.

2.
Nanotechnology ; 31(15): 155602, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31860881

ABSTRACT

Functional modification and structural design of carbon electrode materials are considered as a cost-effective method to improve their electrochemical performance. In this study, a solvothermal method is applied to realize self-assembly of the metal-organic framework. After simple carbonization and acid treatment, carbon nanosheets with 2D adjustable defective sub-units are successfully prepared for the first time. It is found that carbonization temperature has a significant effect on the carbon skeleton structure. The optimal nanostructures with large specific surface area and appropriate pore size distribution make self-assembled carbon nanosheets having excellent Li/Na-ion storage properties. In addition, the adjustable carbon skeleton structure can effectively avoid irreversible damage when charge-discharge cycles. For Li-ion batteries, a specific capacity of 825 mAh g-1 is achieved after 100 cycles at 100 mA g-1, while for Na-ion batteries a specific capacity of 193 mAh g-1 is observed after 100 cycles at 100 mA g-1. Moreover, for Na-ion batteries, even at a high rate of 1000 mA g-1 the material delivers a specific capacity of 109.5 mAh g-1 after 3500 cycles.

3.
ACS Appl Mater Interfaces ; 11(4): 4139-4144, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30618238

ABSTRACT

HfO2-based unconventional ferroelectric materials were recently discovered and have attracted a great deal of attention in both academia and industry. The growth of epitaxial Si-doped HfO2 films has opened up a route to understand the mechanism of ferroelectricity. Here, we used pulsed laser deposition to grow epitaxial Si-doped HfO2 films in different orientations of N-type SrTiO3 substrates. Polar nanodomains can be written and read using piezoforce microscopy, and these domains are reversibly switched with a phase change of 180°. Films with different thicknesses displayed a coercive field Ec and a remnant polarization Pr of approximately 4-5 MV/cm and 8-32 µC/cm2, respectively. X-ray diffraction and high-resolution transmission electron microscopy (HRTEM) results identified that the as-grown Si-doped HfO2 films have strained fluorite structures. The ABAB stacking mode of the Hf atomic grid observed by HRTEM clearly demonstrates that the ferroelectricity originates from the noncentrosymmetric Pca21 polar structure. Combined with soft X-ray absorption spectra, the results showed that the Pca21 ferroelectric crystal structure manifested as an O sublattice distortion by the effect of the interface strain and Si dopant interactions, resulting in a nanoscaled ferroelectric ordered state because of further crystal splitting.

4.
Enzyme Microb Technol ; 96: 67-74, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27871387

ABSTRACT

Al doped and undoped ZnO thin films were deposited by pulsed-laser deposition on polycarbonate sheets. The films were characterized by optical transmission, Hall effect measurement, XRD and SEM. Optical transmission and surface reflectometry studies showed good transparency with thicknesses ∼100nm and surface roughness of 10nm. Hall effect measurements showed that the sheet carrier concentration was -1.44×1015cm-2 for AZO and -6×1014cm-2 for ZnO. The films were then modified by drop-casting glucose oxidase (GOx) without the use of any mediators. Higher protein concentration was observed on ZnO as compared to AZO with higher specific activity for ZnO (0.042Umg-1) compared to AZO (0.032Umg-1), and was in agreement with cyclic voltemmetry (CV). X-ray photoelectron spectroscopy (XPS) suggested that the protein was bound by dipole interactions between AZO lattice oxygen and the amino group of the enzyme. Chronoamperometry showed sensitivity of 5.5µAmM-1cm-2 towards glucose for GOx/AZO and 2.2µAmM-1cm-2 for GOx/ZnO. The limit of detection (LoD) was 167µM of glucose for GOx/AZO, as compared to 360µM for GOx/ZnO. The linearity was 0.28-28mM for GOx/AZO whereas it was 0.6-28mM for GOx/ZnO with a response time of 10s. Possibly due to higher enzyme loading, the decrease of impedance in presence of glucose was larger for GOx/ZnO as compared to GOx/AZO in electrochemical impedance spectroscopy (EIS). Analyses with clinical blood serum samples showed that the systems had good reproducibility and accuracy. The characteristics of novel ZnO and AZO thin films with GOx as a model enzyme, should prove useful for the future fabrication of inexpensive, highly sensitive, disposable electrochemical biosensors for high throughput diagnostics.


Subject(s)
Biosensing Techniques/methods , Enzymes, Immobilized/chemistry , Glucose Oxidase/chemistry , Zinc Oxide/chemistry , Aluminum/chemistry , Biotechnology , Blood Chemical Analysis/methods , Blood Glucose/analysis , Dielectric Spectroscopy , Enzymes, Immobilized/metabolism , Glucose Oxidase/metabolism , Humans , Kinetics , Lasers , Polycarboxylate Cement
5.
Enzyme Microb Technol ; 95: 76-84, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27866629

ABSTRACT

Despite their large secretome and wide applications in bioprocesses, fungi remain underexplored in metal nanoparticles (MNP) biosynthesis. Previous studies have shown that cell surface proteins of Rhizopus oryzae play a crucial role in biomineralization of Au(III) to produce gold nanoparticles (AuNPs). Therefore, it is hypothesized that purified cell surface protein may produce in vitro AuNPs with narrow size distribution for biomedical and biocatalytic applications. However, different protein extraction methods might affect protein stability and the AuNP biosynthesis process. Herein, we have explored the extraction of cell surface proteins from R. oryzae using common detergents and reducing agent (sodium dodecyl sulfate (SDS) Triton X-100, and 1,4-dithiothreitol (DTT)) and their effect on the size and shape of the biosynthetic AuNPs. The surface proteins extracted with reducing agent (DTT) and non-ionic detergent (Triton X-100) produce spherical AuNPs with a mean particle size of 16±7nm, and 19±4nm, respectively, while the AuNPs produced by the surface protein extracted by ionic detergent (SDS) are flower-like AuNPs with broader size distribution of 43±19nm. This synthetic approach does not require use of any harsh chemicals, multistep preparation and separation process, favouring environmental sustainability. The biosynthetic AuNPs thus formed, are stable in different physiological buffers and hemocompatible, making them suitable for biomedical applications.


Subject(s)
Fungal Proteins/metabolism , Gold/chemistry , Metal Nanoparticles/chemistry , Biotechnology , Green Chemistry Technology , Hemolysis , Humans , In Vitro Techniques , Materials Testing , Membrane Proteins/metabolism , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Nanotechnology , Oxidation-Reduction , Rhizopus/metabolism
6.
Bioelectrochemistry ; 106(Pt A): 186-93, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25862431

ABSTRACT

The attachment of electrochemically active microorganisms (EAM) on an electrode is determined by both the chemistry and topography of the electrode surface. Pre-treatment of the electrode surface by atmospheric air plasma introduces hydrophilic functional groups, thereby increasing cell attachment and electroactivity in short-term experiments. In this study, we use graphite and carbon felt electrodes to grow the model EAM Shewanella loihica PV-4 at oxidative potential (0.2 V vs. Ag/AgCl). Cell attachment and electroactivity are measured through electrodynamic methods. Atmospheric air plasma pre-treatment increases cell attachment and current output at graphite electrodes by 25%, while it improves the electroactivity of the carbon felt electrodes by 450%. Air plasma pre-treatment decreased the coulombic efficiency on both carbon felt and graphite electrodes by 60% and 80%, respectively. Microbially produced flavins adsorb preferentially at the graphite electrode, and air plasma pre-treatment results in lower flavin adsorption at both graphite and carbon felt electrodes. Results show that air plasma pre-treatment is a feasible option to increase current output in bioelectrochemical systems.


Subject(s)
Air , Bioelectric Energy Sources/microbiology , Carbon/chemistry , Electric Conductivity , Graphite/chemistry , Plasma Gases/chemistry , Shewanella/metabolism , Adsorption , Carbon Fiber , Electrodes , Flavins/chemistry , Flavins/metabolism , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...