Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1154332, 2023.
Article in English | MEDLINE | ID: mdl-37360738

ABSTRACT

Cannabis sativa L. is an ancient crop used for fiber and seed production and not least for its content of cannabinoids used for medicine and as an intoxicant drug. Due to the psychedelic effect of one of the compounds, tetrahydrocannabinol (THC), many countries had regulations or bands on Cannabis growing, also as fiber or seed crop. Recently, as many of these regulations are getting less tight, the interest for the many uses of this crop is increasing. Cannabis is dioecious and highly heterogenic, making traditional breeding costly and time consuming. Further, it might be difficult to introduce new traits without changing the cannabinoid profile. Genome editing using new breeding techniques might solve these problems. The successful use of genome editing requires sequence information on suitable target genes, a genome editing tool to be introduced into plant tissue and the ability to regenerate plants from transformed cells. This review summarizes the current status of Cannabis breeding, uncovers potentials and challenges of Cannabis in an era of new breeding techniques and finally suggests future focus areas that may help to improve our overall understanding of Cannabis and realize the potentials of the plant.

2.
Plant Methods ; 10: 10, 2014.
Article in English | MEDLINE | ID: mdl-24855486

ABSTRACT

BACKGROUND: When creating plant transformation vectors, full control of nucleotides flanking the insert in the final construct may be desirable. Modern ligase-independent methods for DNA-recombination are based on linearization by classical type II restriction endonucleases (REs) alone or in combination with nicking enzymes leaving residual nucleotides behind in the final construct. We here explore the use of type IIS and type IIB REs for vector linearization that combined with sequence and ligase-independent cloning (SLIC) overcomes this problem and promotes seamless gene-insertion in vectors. Providing the basis for a collection of biolistic plant transformation vectors ready to be cloned with different genes-of-interest, we present two vectors, where promoter and terminator are joined by a spacer. During spacer-removal linearization (SRL), type IIS and type IIB REs remove their own recognition sequences from the vector leaving no undesired, short sequences behind. RESULTS: We designed two plant transformation vectors prepared for SRL in combination with SLIC, pAUrumII and pAUrumIII, harboring a spacer with recognition sites for a type IIS and IIB RE, respectively. The gene for a green fluorescent protein, gfp, was successfully cloned into both vectors; traces of pAUrumIII, however, contaminated the transformation due to incomplete linearization, an issue not encountered with the type IIS linearized pAUrumII. Both constructs, pAUrumII-gfp and pAUrumIII-gfp, were functional, when tested in vitro on wheat and barley endosperm cells for transient gfp expression. CONCLUSIONS: All nucleotides flanking an insert in a biolistic plant transformation vector can be customized by means of SRL in combination with SLIC. Especially type IIS REs promote an efficient cloning result. Based on our findings, we believe that the SRL system can be useful in a series of plant transformation vectors, favoring the presence of functional sequences for optimal expression over redundant cloning-site remnants.

3.
Biochem Soc Trans ; 38(2): 689-94, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20298244

ABSTRACT

Most of the phosphorus in the resting seed is stored inside protein storage vacuoles as PA (phytic acid; InsP(6)). The biosynthesis and accumulation of PA can be detected beginning from a few days after anthesis and seem to continue during seed development until maturation. The first step in PA biosynthesis is the formation of Ins3P by conversion of glucose 6-phosphate. This is then followed by a sequential and ordered phosphorylation of the remaining five positions of the inositol ring by a number of kinases, resulting in PA. Identification of low-PA mutants in cereals, legumes and Arabidopsis is instrumental for resolving the biosynthetic pathway and identification of genes controlling the accumulation of PA. Mutations in seven genes involved in the metabolism of PA have been identified and characterized among five plant species using induced mutagenesis and insertion elements. Understanding the biosynthetic pathway and genes controlling the accumulation of PA in plant seeds and how PA may balance the free phosphate is of importance for molecular breeding of crop plants, particularly cereals and legumes.


Subject(s)
Genes, Plant/genetics , Inositol Phosphates/biosynthesis , Inositol Phosphates/metabolism , Mutation , Seeds , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Genes, Plant/physiology , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Models, Biological , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/physiology , Mutation/physiology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Seeds/genetics , Seeds/metabolism , Signal Transduction/genetics , Tissue Distribution
4.
BMC Plant Biol ; 9: 15, 2009 Feb 02.
Article in English | MEDLINE | ID: mdl-19187556

ABSTRACT

BACKGROUND: The potyviruses sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV) are major pathogens of maize worldwide. Two loci, Scmv1 and Scmv2, have ealier been shown to confer complete resistance to SCMV. Custom-made microarrays containing previously identified SCMV resistance candidate genes and resistance gene analogs were utilised to investigate and validate gene expression and expression patterns of isogenic lines under pathogen infection in order to obtain information about the molecular mechanisms involved in maize-potyvirus interactions. RESULTS: By employing time course microarray experiments we identified 68 significantly differentially expressed sequences within the different time points. The majority of differentially expressed genes differed between the near-isogenic line carrying Scmv1 resistance locus at chromosome 6 and the other isogenic lines. Most differentially expressed genes in the SCMV experiment (75%) were identified one hour after virus inoculation, and about one quarter at multiple time points. Furthermore, most of the identified mapped genes were localised outside the Scmv QTL regions. Annotation revealed differential expression of promising pathogenesis-related candidate genes, validated by qRT-PCR, coding for metallothionein-like protein, S-adenosylmethionine synthetase, germin-like protein or 26S ribosomal RNA. CONCLUSION: Our study identified putative candidate genes and gene expression patterns related to resistance to SCMV. Moreover, our findings support the effectiveness and reliability of the combination of different expression profiling approaches for the identification and validation of candidate genes. Genes identified in this study represent possible future targets for manipulation of SCMV resistance in maize.


Subject(s)
Gene Expression Profiling , Plant Diseases/genetics , Potyvirus , Zea mays/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Genes, Plant , Immunity, Innate , Oligonucleotide Array Sequence Analysis , Plant Diseases/virology , RNA, Plant/genetics , Sequence Analysis, DNA , Time Factors , Zea mays/virology
5.
Genome ; 51(9): 673-84, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18772945

ABSTRACT

Sugarcane mosaic virus (SCMV) is the causal pathogen for a severe mosaic virus disease of maize worldwide. In our previous research, the maize resistance gene analog (RGA) Pic19 and its three cognate BAC contigs were mapped to the same region as the SCMV resistance gene Scmv1. Here we report the isolation and characterization of the Pic19R gene family members from the inbred line FAP1360A, which shows complete resistance to SCMV. Two primer pairs were designed based on the conserved regions among the known Pic19 paralogs and used for rapid amplification of cDNA ends of FAP1360A. Six full-length cDNAs, corresponding to the Pic19R-1 to -6 paralogs, were obtained. Three of them (Pic19R-1 to -3) had uninterrupted coding sequences and were, therefore, regarded as candidates for the Scmv1 gene. A total of 18 positive BAC clones harboring the Pic19R-2 to -5 paralogs were obtained from the FAP1360A BAC library and assembled into two BAC contigs. Two markers, tagging Pic19R-2 and -3 and Pic19R-4, were developed and used to genotype a high-resolution mapping population segregating solely for the Scmv1 locus. Although closely linked, none of these three Pic19R paralogs co-segregated with the Scmv1 locus. Analysis of the Pic19R family indicated that the Pic19R-1 paralog is identical to the known Rxo1 gene conferring resistance to rice bacterial streak disease and none of the other Pic19R paralogs seems to be involved in resistance to SCMV.


Subject(s)
Genes, Plant , Mosaic Viruses/pathogenicity , Multigene Family , Plant Proteins/genetics , Zea mays/genetics , Amino Acid Sequence , Base Sequence , Chromosomes, Artificial, Bacterial , Cloning, Molecular , DNA Primers , DNA, Complementary , Genetic Markers , Molecular Sequence Data , Plant Proteins/chemistry , Sequence Homology, Amino Acid , Zea mays/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...