Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Toxicol Environ Health A ; 80(16-18): 916-931, 2017.
Article in English | MEDLINE | ID: mdl-28849995

ABSTRACT

Rising oil and gas activities in northern high latitudes have led to an increased risk of petroleum pollution in these ecosystems. Further, seasonal high UV radiation at high latitudes may elevate photo-enhanced toxicity of petroleum pollution to marine organisms. Zooplanktons are a key ecological component of northern ecosystems; therefore, it is important to assess their sensitivity to potential pollutants of oil and gas activity. As ontogenetic development may be particularly sensitive, the aim of this study was to examine the impact of chronic exposure to oil water dispersion (OWD) on development and feeding of early life stages of the Northern krill, Meganyctiphanes norvegica. In a range of experiments, embryonic, nonfeeding, and feeding larval stages were exposed to concentrations of between 0.01 and 0.1 mg/L of oil or photo-modified oil for 19 and 21 d. No significant effects on egg respiration, hatching success, development, length and larval survival were observed from these treatments. Similarly, evolution of fatty acid composition patterns during ontogenetic development was unaffected. The results indicates a high degree of resilience of these early developmental stages to such types and concentrations of pollutants. However, feeding and motility in later calyptopis-stage larvae were significantly impaired at exposure of 0.1 mg/L oil. Data indicate that feeding larval stage of krill was more sensitive to OWD than early nonfeeding life stages. This might be attributed to the narcotic effects of oil pollutants, their direct ingestion, or accumulated adverse effects over early development.


Subject(s)
Environmental Exposure/adverse effects , Euphausiacea/drug effects , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Euphausiacea/growth & development , Fatty Acids/analysis , Larva/drug effects , Larva/growth & development , Linear Models , Multivariate Analysis , Petroleum Pollution/adverse effects , Polycyclic Aromatic Hydrocarbons/toxicity
2.
Mar Pollut Bull ; 69(1-2): 28-37, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23419752

ABSTRACT

Biologically treated wastewater (WW) from the Hammerfest LNG (liquefied natural gas) plant is discharged to the sea. A study using biomarkers in mussels and Atlantic cod was performed to examine whether this discharge meets a zero harmful emission requirement. Caging of mussels close to the outfall and exposure of mussels and fish to WW in the laboratory were conducted, and a suite of contaminant responsive markers was assessed in exposed animals. In mussels the markers included chemical contaminant levels, haemocyte lysosomal instability and nucleus integrity, cellular energy allocation, digestive gland and gonad histopathology and shell-opening behaviour. In fish, biliary PAH metabolites and gill histopathology biomarkers were measured. A consistent cause-effect relationship between WW treatments and markers measured in test animals was not found. The results therefore indicate that the WW emission is unlikely to represent a significant stress factor for the local marine environment under the conditions studied.


Subject(s)
Environmental Monitoring/methods , Wastewater/analysis , Water Pollutants, Chemical/metabolism , Animals , Biomarkers/metabolism , Gadus morhua/metabolism , Mytilus/metabolism , Natural Gas , Norway , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Risk Assessment , Water Pollutants, Chemical/analysis
3.
J Toxicol Environ Health A ; 74(7-9): 424-38, 2011.
Article in English | MEDLINE | ID: mdl-21391089

ABSTRACT

Ocean acidification (OA) resulting from anthropogenic emissions of carbon dioxide (CO(2)) has already lowered and is predicted to further lower surface ocean pH. There is a particular need to study effects of OA on organisms living in cold-water environments due to the higher solubility of CO(2) at lower temperatures. Mussel larvae (Mytilus edulis) and shrimp larvae (Pandalus borealis) were kept under an ocean acidification scenario predicted for the year 2100 (pH 7.6) and compared against identical batches of organisms held under the current oceanic pH of 8.1, which acted as a control. The temperature was held at a constant 10°C in the mussel experiment and at 5°C in the shrimp experiment. There was no marked effect on fertilization success, development time, or abnormality to the D-shell stage, or on feeding of mussel larvae in the low-pH (pH 7.6) treatment. Mytilus edulis larvae were still able to develop a shell in seawater undersaturated with respect to aragonite (a mineral form of CaCO(3)), but the size of low-pH larvae was significantly smaller than in the control. After 2 mo of exposure the mussels were 28% smaller in the pH 7.6 treatment than in the control. The experiment with Pandalus borealis larvae ran from 1 through 35 days post hatch. Survival of shrimp larvae was not reduced after 5 wk of exposure to pH 7.6, but a significant delay in zoeal progression (development time) was observed.


Subject(s)
Life Cycle Stages/drug effects , Mytilus edulis/drug effects , Pandalidae/drug effects , Seawater/chemistry , Water Pollutants, Chemical/toxicity , Animals , Fertilization/drug effects , Hydrogen-Ion Concentration , Models, Biological , Mytilus edulis/growth & development , Oceans and Seas , Pandalidae/growth & development
4.
J Chem Ecol ; 28(10): 2107-17, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12474903

ABSTRACT

The role of olfaction and diffusible pheromones in mate location behavior of sea lice, Lepeophtheirus salmonis, was assessed with Y-tube behavioral bioassays. The pheromone "emitting" animals were located in a chamber in one arm of a Y-tube arena, with artificial seawater flowing through both arms. Adult male sea lice displayed both activation and directional responses to seawater conditioned with preadult II virgin females, but were only activated by mated adult female conditioned water. Further, when males were given the choice of preadult II virgin females or mated adult females, a significant number of males chose the arm with the preadult II virgin females. Adult males showed activation responses when presented with water conditioned with adult males but were not attracted to them. When presented with adult males, preadult II virgin females showed only directional responses, but not activation responses. Preadult II virgin female conditioned water was extracted using solid-phase extraction (SPE) protocols pioneered for semiochemical isolation. Adult male sea lice showed significant directional responses to the preadult II virgin female SPE extract. Distillation under vacuum was performed on the extract to give a distillate comprising components with a molecular weight range and physical properties comparable to those of compounds utilized as volatile semiochemicals by terrestrial organisms and a residue comprising components with higher molecular weight range comparable to those utilized as involatile semiochemicals. Adult males were found to be both significantly activated and attracted to the distillate, but not to the residue. This research provides evidence that small, lipophilic organic molecules are used by sea lice as sex pheromone signals to locate a member of the opposite sex.


Subject(s)
Copepoda/physiology , Movement , Sex Attractants/pharmacology , Sexual Behavior, Animal , Smell , Animals , Biological Assay , Chemotaxis , Diffusion , Female , Male , Sex Attractants/analysis , Sex Attractants/isolation & purification , Water Movements
5.
Pest Manag Sci ; 58(6): 537-45, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12138620

ABSTRACT

The development of behavioural bioassays and electrophysiological recording techniques has enabled the role of semiochemicals to be investigated for the first time in Lepeophtheirus salmonis (Krøyer). Adult male sea lice L salmonis were activated by, and attracted to, salmon-conditioned water (SCW) and SCW extract. Non-host fish odours, turbot-conditioned water (TCW) and turbot-conditioned water extract (TCW extract), elicited activation but no attraction in the lice. Solid-phase extraction techniques were developed to extract low molecular weight components of fish odours, and biological activity was shown to be confined to these. Electrophysiological activity from aesthetascs in the first antennae was found and neural responses to odours were recorded from the antennal nerves. Preliminary experiments on individual chemicals (isophorone, 1-octen-3-ol) linked to salmon revealed behavioural activation and electrophysiological responses in adult male L salmonis. Isophorone was shown to be significantly attractive to sea lice when placed in a slow-release system in a perfused tank of seawater in a choice situation. Proof of concept has been established for successfully extracting odour cues from seawater, analysing their biological activity and applying these to slow-release technologies for field trapping of lice. Future work involving linked GC-MS techniques using behaviour, electrophysiological responses, and organolepsis will establish further host location cues specific to Atlantic salmon.


Subject(s)
Copepoda/drug effects , Pest Control/methods , Pheromones/pharmacology , Salmon/parasitology , Animals , Behavior, Animal/drug effects , Copepoda/physiology , Cues , Electrophysiology , Fish Diseases/parasitology , Fish Diseases/prevention & control , Gas Chromatography-Mass Spectrometry , Host-Parasite Interactions , Male , Motor Activity/drug effects , Odorants , Parasitic Diseases, Animal/prevention & control , Pheromones/analysis , Seawater/chemistry , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...