Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Matrix Biol ; 111: 307-328, 2022 08.
Article in English | MEDLINE | ID: mdl-35878760

ABSTRACT

Thrombospondin-1 (TSP-1) is a matricellular protein with a multitude of functions in the pericellular and extracellular environment. We report a novel pathway for the regulation of extracellular TSP-1, governed by the endocytic collagen receptor, uPARAP (urokinase plasminogen activator receptor-associated protein; MRC2 gene product, also designated Endo180, CD280). First, using a novel proteomic approach for unbiased identification of ligands for endocytosis, we identify TSP-1 as a candidate ligand for specific uptake by uPARAP. We then show that uPARAP can efficiently internalize TSP-1 for lysosomal degradation, that this capability is not shared by other, closely related endocytic receptors and that uPARAP serves to regulate the extracellular levels of TSP-1 in vitro. Using wild type and uPARAP null mice, we also demonstrate uPARAP-mediated endocytosis of TSP-1 in dermal fibroblasts in vivo. Unlike other uPARAP ligands, the interaction with TSP-1 is sensitive to heparin and the responsible molecular motifs in uPARAP are overlapping, but not identical with those governing the interaction with collagens. Finally, we show that uPARAP can also mediate the endocytosis of TSP-2, a thrombospondin closely related to TSP-1, but not the more distantly related members of the same protein family, TSP-3, -4 and -5. These findings indicate that the role of uPARAP in ECM remodeling is not limited to the uptake of collagen for degradation but also includes an orchestrator function in the regulation of thrombospondins with numerous downstream effects. This is likely to be an important factor in the physiological and pathological roles of uPARAP in bone biology, fibrosis and cancer. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD031272.


Subject(s)
Membrane Glycoproteins/metabolism , Receptors, Cell Surface/metabolism , Thrombospondin 1/metabolism , Animals , Collagen/metabolism , Endocytosis , Ligands , Mice , Mice, Knockout , Proteomics , Thrombospondin 1/genetics
2.
Sci Rep ; 10(1): 19138, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33154487

ABSTRACT

The membrane-anchored matrix metalloprotease MT1-MMP is a potent collagenolytic enzyme with a well-established role in extracellular matrix turnover and cellular invasion into collagen-rich tissues. MT1-MMP is highly expressed in various types of cancer and has been demonstrated to be directly involved in several stages of tumor progression, including primary tumor growth, angiogenesis, invasion and metastasis. Osteosarcoma is the most common type of primary bone cancer. This disease is characterized by invasive tumor growth, leading to extensive bone destruction, and metastasis to the lungs. The tumor cells in human osteosarcoma display a strong expression of MT1-MMP, but the role of MT1-MMP in osteosarcoma progression is currently unknown. In this study, we investigated the role of MT1-MMP during various stages of osteosarcoma development. We utilized an optimized orthotopic murine osteosarcoma model and human osteosarcoma cells in which the MT1-MMP gene was knocked out using CRISPR/Cas9. We observed a strong expression of MT1-MMP in wildtype cells of both primary tumors and lung metastases, but, surprisingly, MT1-MMP deficiency did not affect primary tumor growth, bone degradation or the formation and growth of lung metastases. We therefore propose that, unlike findings reported in other cancers, tumor-expressed MT1-MMP is dispensable for all stages of osteosarcoma progression.


Subject(s)
Bone Neoplasms/genetics , Bone and Bones/pathology , Cell Proliferation/genetics , Lung Neoplasms/genetics , Matrix Metalloproteinase 14/genetics , Osteosarcoma/genetics , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Bone and Bones/metabolism , CRISPR-Cas Systems , Cell Line, Tumor , Disease Progression , Gene Knockdown Techniques , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Matrix Metalloproteinase 14/metabolism , Mice , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Osteosarcoma/metabolism , Osteosarcoma/secondary
3.
J Pathol ; 238(1): 120-33, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26466547

ABSTRACT

In osteosarcoma, a primary mesenchymal bone cancer occurring predominantly in younger patients, invasive tumour growth leads to extensive bone destruction. This process is insufficiently understood, cannot be efficiently counteracted and calls for novel means of treatment. The endocytic collagen receptor, uPARAP/Endo180, is expressed on various mesenchymal cell types and is involved in bone matrix turnover during normal bone growth. Human osteosarcoma specimens showed strong expression of this receptor on tumour cells, along with the collagenolytic metalloprotease, MT1-MMP. In advanced tumours with ongoing bone degeneration, sarcoma cells positive for these proteins formed a contiguous layer aligned with the degradation zones. Remarkably, osteoclasts were scarce or absent from these regions and quantitative analysis revealed that this scarcity marked a strong contrast between osteosarcoma and bone metastases of carcinoma origin. This opened the possibility that sarcoma cells might directly mediate bone degeneration. To examine this question, we utilized a syngeneic, osteolytic bone tumour model with transplanted NCTC-2472 sarcoma cells in mice. When analysed in vitro, these cells were capable of degrading the protein component of surface-labelled bone slices in a process dependent on MMP activity and uPARAP/Endo180. Systemic treatment of the sarcoma-inoculated mice with a mouse monoclonal antibody that blocks murine uPARAP/Endo180 led to a strong reduction of bone destruction. Our findings identify sarcoma cell-resident uPARAP/Endo180 as a central player in the bone degeneration of advanced tumours, possibly following an osteoclast-mediated attack on bone in the early tumour stage. This points to uPARAP/Endo180 as a promising therapeutic target in osteosarcoma, with particular prospects for improved neoadjuvant therapy.


Subject(s)
Bone Neoplasms/pathology , Osteolysis/metabolism , Osteosarcoma/pathology , Receptors, Mitogen/metabolism , Animals , Disease Models, Animal , Humans , Mice , Neoplasm Invasiveness , Osteoclasts/pathology , Osteolysis/etiology , Osteolysis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...