Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 45(2): 720-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27065420

ABSTRACT

Infiltration facilities for urban stormwater runoff, such as biofilters, rain gardens, and curb extensions, typically contain an engineered soil mixture for effective drainage and retention of pollutants. The treatment efficiency of such soils is generally considered high for many pollutants. However, recent studies have revealed that in situ mobilization of soil organic matter may cause leaching of a range of pollutants and therefore diminish the long-term performance of engineered soils. The purpose of this study was to develop and test sand coated with aluminum (Al) oxides for improving the retention of organic matter and a range of common pollutants in engineered soils. Two alternative Al-coating methods were successfully developed in the laboratory. The Al coating of the sand increased the specific surface area from 0.3 to 1.1 m g to 0.87 to 2.2 m g depending on sand fraction. One method was upscaled to produce 100 kg coated sand. The stability of the coatings was studied in batch experiments. Dry shaking showed a high resistance of the coating against mechanical stress. Increasing the ionic strength by the addition of NaCl seemed to improve the stability of the coatings. Varying pH showed that acidic conditions could compromise the Al coating stability. Overall, one coating method showed slightly better results in terms of higher surface area and stability. The Al coating significantly improved the retention capacity of the sand toward dissolved organic carbon. The results document that it is possible to coat sand effectively with Al oxides and consequently to improve the retention capacity and lifetime of engineered soils for urban stormwater management.


Subject(s)
Aluminum Oxide , Silicon Dioxide/chemistry , Carbon , Cities , Rain , Soil , Water Movements
2.
Environ Monit Assess ; 185(11): 9531-48, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23729164

ABSTRACT

Large quantities of untreated industrial and domestic wastewater are discharged from the city of Hanoi into urban rivers. Sediment samples from three sites in the To Lich River in Hanoi were assessed with respect to the concentrations and potential mobility of cadmium (Cd), nickel (Ni) and lead (Pb). Due to very high Cd concentrations up to 700 mg kg(-1) at one site, the sediment was considered highly unsuitable for any types of land use if dredged and disposed of on land. Chemical sequential extractions of wet and anoxic sediment samples showed that Cd and Pb were largely associated with the redox-sensitive fractions and could thus be mobilised following measures such as resuspension or dredging. To assess the potential mobilisation of heavy metals from the anoxic sediment due to oxidation, the samples were exposed to different oxidants (i.e. atmospheric air and hydrogen peroxide) and afterwards submitted to a leaching test. These experiments showed that although oxidation may increase the equilibrium pore water concentrations of heavy metals in the sediments, other sediment mineral fractions seem to effectively immobilise heavy metals potentially released from the oxidisable fraction.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Metals, Heavy/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Cadmium/analysis , Lead/analysis , Nickel/analysis , Vietnam , Waste Disposal, Fluid , Wastewater/chemistry , Wastewater/statistics & numerical data
3.
J Environ Qual ; 41(6): 1960-9, 2012.
Article in English | MEDLINE | ID: mdl-23128753

ABSTRACT

Roadside infiltration swales with well-defined soil mixtures (filter soil) for the enhancement of both infiltration and treatment of stormwater runoff from roads and parking areas have been common practice in Germany for approximately two decades. Although the systems have proven hydraulically effective, their treatment efficiency and thus lifetime expectancies are not sufficiently documented. The lack of documentation restricts the implementation of new such systems in Germany as well as other countries. This study provides an assessment of eight roadside infiltration swales with filter soil from different locations in Germany that have been operational for 6 to16 yr. The swales were assessed with respect to visual appearance, infiltration rate, soil pH, and soil texture, as well as soil concentration of organic matter, heavy metals (Cd, Cr, Cu, Pb, Zn), and phosphorus. Visually, the swales appeared highly variable with respect to soil color and textural layering as well as composition of plants and soil-dwelling organisms. Three swales still comply with the German design criteria for infiltration rate (10 m/s), while the remaining swales have lower, yet acceptable, infiltration rates around 10 m/s. Six of the eight studied soils have heavy metal concentrations exceeding the limit value for unpolluted soil. Provided that the systems are able to continuously retain existing and incoming pollutants, our analysis indicates that the soils can remain operational for another 13 to 136 yr if the German limit values for unrestricted usage in open construction works are applied. However, no official guidelines exist for acceptable soil quality in existing infiltration facilities.


Subject(s)
Soil/chemistry , Automobiles , Conservation of Natural Resources , Construction Materials , Engineering , Environmental Monitoring , Germany , Soil Pollutants , Time Factors , Vehicle Emissions/analysis , Water/chemistry
4.
J Environ Qual ; 41(6): 1970-81, 2012.
Article in English | MEDLINE | ID: mdl-23128754

ABSTRACT

Use of roadside infiltration systems using engineered filter soil for optimized treatment has been common practice in Germany for decades, but little documentation is available regarding their long-term treatment performance. Here we present the results of laboratory leaching experiments with intact soil columns (15 cm i.d., 25-30 cm length) collected from two German roadside infiltration swales constructed in 1997. The columns were irrigated with synthetic solutions of unpolluted or polluted (dissolved heavy metals and fine suspended solids) road runoff, as well as a soluble nonreactive tracer (bromide) and a dye (brilliant blue). The experiments were performed at two irrigation rates corresponding to catchment rainfall intensities of approximately 5.1 and 34 mm/h. The bromide curves indicated that preferential flow was more pronounced at high irrigation rates, which was supported by the flow patterns revealed in the dye tracing experiment. Nonetheless, the soils seemed to be capable of retaining most of the dissolved heavy metals from the polluted road runoff at both low and high irrigation rates, except for Cr, which appears to pass through the soil as chromate. Fluorescent microspheres (diameter = 5 µm) used as surrogates for fine suspended solids were efficiently retained by the soils (>99%). However, despite promising treatment abilities, internal mobilization of heavy metals and P from the soil was observed, resulting in potentially critical effluent concentrations of Cu, Zn, and Pb. This is mainly ascribed to high concentrations of in situ mobilized dissolved organic carbon (DOC). Suggestions are provided for possible improvements and further research to minimize DOC mobilization in engineered filter soils.


Subject(s)
Environmental Monitoring , Soil Pollutants/chemistry , Soil/chemistry , Water Pollutants, Chemical/chemistry , Automobiles , Bromides/chemistry , Carbon/chemistry , Conservation of Natural Resources , Construction Materials , Engineering , Germany , Hydrogen-Ion Concentration , Metals, Heavy/chemistry , Phosphorus/chemistry , Time Factors , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...