Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 129(10): 1887-99, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27364915

ABSTRACT

KEY MESSAGE: The Brassica napus Illumina array provides genome-wide markers linked to the available genome sequence, a significant tool for genetic analyses of the allotetraploid B. napus and its progenitor diploid genomes. A high-density single nucleotide polymorphism (SNP) Illumina Infinium array, containing 52,157 markers, was developed for the allotetraploid Brassica napus. A stringent selection process employing the short probe sequence for each SNP assay was used to limit the majority of the selected markers to those represented a minimum number of times across the highly replicated genome. As a result approximately 60 % of the SNP assays display genome-specificity, resolving as three clearly separated clusters (AA, AB, and BB) when tested with a diverse range of B. napus material. This genome specificity was supported by the analysis of the diploid ancestors of B. napus, whereby 26,504 and 29,720 markers were scorable in B. oleracea and B. rapa, respectively. Forty-four percent of the assayed loci on the array were genetically mapped in a single doubled-haploid B. napus population allowing alignment of their physical and genetic coordinates. Although strong conservation of the two positions was shown, at least 3 % of the loci were genetically mapped to a homoeologous position compared to their presumed physical position in the respective genome, underlying the importance of genetic corroboration of locus identity. In addition, the alignments identified multiple rearrangements between the diploid and tetraploid Brassica genomes. Although mostly attributed to genome assembly errors, some are likely evidence of rearrangements that occurred since the hybridisation of the progenitor genomes in the B. napus nucleus. Based on estimates for linkage disequilibrium decay, the array is a valuable tool for genetic fine mapping and genome-wide association studies in B. napus and its progenitor genomes.


Subject(s)
Brassica napus/genetics , Chromosome Mapping , Genome, Plant , Genotyping Techniques , Polymorphism, Single Nucleotide , DNA, Plant/genetics , Diploidy , Genetic Markers , Sequence Analysis, DNA , Tetraploidy
2.
BMC Genomics ; 16: 737, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26419915

ABSTRACT

BACKGROUND: Flowering time, plant height and seed yield are strongly influenced by climatic and day-length adaptation in crop plants. To investigate these traits under highly diverse field conditions in the important oilseed crop Brassica napus, we performed a genome-wide association study using data from diverse agroecological environments spanning three continents. METHODS: A total of 158 European winter-type B.napus inbred lines were genotyped with 21,623 unique, single-locus single-nucleotide polymorphism (SNP) markers using the Brassica 60 K-SNP Illumina® Infinium consortium array. Phenotypic associations were calculated in the panel over the years 2010-2012 for flowering time, plant height and seed yield in 5 highly diverse locations in Germany, China and Chile, adding up to 11 diverse environments in total. RESULTS: We identified 101 genome regions associating with the onset of flowering, 69 with plant height, 36 with seed yield and 68 cross-trait regions with potential adaptive value. Within these regions, B.napus orthologs for a number of candidate adaptation genes were detected, including central circadian clock components like CIRCADIAN CLOCK- ASSOCIATED 1 (Bna.CCA1) and the important flowering-time regulators FLOWERING LOCUS T (Bna.FT) and FRUITFUL (Bna.FUL). DISCUSSION: Gene ontology (GO) enrichment analysis of candidate regions suggested that selection of genes involved in post-transcriptional and epigenetic regulation of flowering time may play a potential role in adaptation of B. napus to highly divergent environments. The classical flowering time regulators Bna.FLC and Bna.CO were not found among the candidate regions, although both show functional variation. Allelic effects were additive for plant height and yield, but not for flowering time. The scarcity of positive minor alleles for yield in this breeding pool points to a lack of diversity for adaptation that could restrict yield gain in the face of environmental change. CONCLUSIONS: Our study provides a valuable framework to further improve the adaptability and yield stability of this recent allopolyploid crop under changing environments. The results suggest that flowering time regulation within an adapted B. napus breeding pool is driven by a high number of small modulating processes rather than major transcription factors like Bna.CO. In contrast, yield regulation appears highly parallel, therefore yield could be increased by pyramiding positively associated haplotypes.


Subject(s)
Brassica napus/growth & development , Flowers/genetics , Genome-Wide Association Study , Quantitative Trait Loci/genetics , Alleles , Brassica napus/genetics , Chromosome Mapping , Epigenesis, Genetic , Flowers/growth & development , Genotype , Haplotypes , Polymorphism, Single Nucleotide , Seeds/genetics , Seeds/growth & development
3.
PLoS One ; 9(12): e114878, 2014.
Article in English | MEDLINE | ID: mdl-25506829

ABSTRACT

Phytoene synthase (PSY) has been shown to catalyze the first committed and rate-limiting step of carotenogenesis in several crop species, including Brassica napus L. Due to its pivotal role, PSY has been a prime target for breeding and metabolic engineering the carotenoid content of seeds, tubers, fruits and flowers. In Arabidopsis thaliana, PSY is encoded by a single copy gene but small PSY gene families have been described in monocot and dicotyledonous species. We have recently shown that PSY genes have been retained in a triplicated state in the A- and C-Brassica genomes, with each paralogue mapping to syntenic locations in each of the three "Arabidopsis-like" subgenomes. Most importantly, we have shown that in B. napus all six members are expressed, exhibiting overlapping redundancy and signs of subfunctionalization among photosynthetic and non photosynthetic tissues. The question of whether this large PSY family actually encodes six functional enzymes remained to be answered. Therefore, the objectives of this study were to: (i) isolate, characterize and compare the complete protein coding sequences (CDS) of the six B. napus PSY genes; (ii) model their predicted tridimensional enzyme structures; (iii) test their phytoene synthase activity in a heterologous complementation system and (iv) evaluate their individual expression patterns during seed development. This study further confirmed that the six B. napus PSY genes encode proteins with high sequence identity, which have evolved under functional constraint. Structural modeling demonstrated that they share similar tridimensional protein structures with a putative PSY active site. Significantly, all six B. napus PSY enzymes were found to be functional. Taking into account the specific patterns of expression exhibited by these PSY genes during seed development and recent knowledge of PSY suborganellar localization, the selection of transgene candidates for metabolic engineering the carotenoid content of oilseeds is discussed.


Subject(s)
Brassica napus/enzymology , Carotenoids/metabolism , Ligases/genetics , Plant Proteins/genetics , Amino Acid Sequence , Brassica napus/chemistry , Brassica napus/genetics , Brassica napus/metabolism , Genes, Plant , Ligases/chemistry , Ligases/metabolism , Models, Molecular , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Conformation , Sequence Alignment
4.
New Phytol ; 201(2): 657-669, 2014 Jan.
Article in English | MEDLINE | ID: mdl-26012723

ABSTRACT

Growth in plants occurs via the addition of repeating modules, suggesting that the genetic architecture of similar subunits may vary between earlier- and later-developing modules. These complex environment × ontogeny interactions are not well elucidated, as studies examining quantitative trait loci (QTLs) expression over ontogeny have not included multiple environments. Here, we characterized the genetic architecture of vegetative traits and onset of reproduction over ontogeny in recombinant inbred lines of Brassica rapa in the field and glasshouse. The magnitude of genetic variation in plasticity of seedling internodes was greater than in those produced later in ontogeny. We correspondingly detected that QTLs for seedling internode length were environment-specific, whereas later in ontogeny the majority of QTLs affected internode lengths in all treatments. The relationship between internode traits and onset of reproduction varied with environment and ontogenetic stage. This relationship was observed only in the glasshouse environment and was largely attributable to one environment-specific QTL. Our results provide the first evidence of a QTL × environment × ontogeny interaction, and provide QTL resolution for differences between early- and later-stage plasticity for stem elongation. These results also suggest potential constraints on morphological evolution in early vs later modules as a result of associations with reproductive timing.


Subject(s)
Brassica rapa/genetics , Environment , Quantitative Trait Loci , Brassica rapa/anatomy & histology , Brassica rapa/growth & development , Genes, Plant , Inbreeding , Plant Stems/anatomy & histology , Plant Stems/genetics , Plant Stems/growth & development , Recombination, Genetic , Reproduction , Time Factors
5.
PLoS One ; 8(12): e81992, 2013.
Article in English | MEDLINE | ID: mdl-24312619

ABSTRACT

Targeted genomic selection methodologies, or sequence capture, allow for DNA enrichment and large-scale resequencing and characterization of natural genetic variation in species with complex genomes, such as rapeseed canola (Brassica napus L., AACC, 2n=38). The main goal of this project was to combine sequence capture with next generation sequencing (NGS) to discover single nucleotide polymorphisms (SNPs) in specific areas of the B. napus genome historically associated (via quantitative trait loci -QTL- analysis) to traits of agronomical and nutritional importance. A 2.1 million feature sequence capture platform was designed to interrogate DNA sequence variation across 47 specific genomic regions, representing 51.2 Mb of the Brassica A and C genomes, in ten diverse rapeseed genotypes. All ten genotypes were sequenced using the 454 Life Sciences chemistry and to assess the effect of increased sequence depth, two genotypes were also sequenced using Illumina HiSeq chemistry. As a result, 589,367 potentially useful SNPs were identified. Analysis of sequence coverage indicated a four-fold increased representation of target regions, with 57% of the filtered SNPs falling within these regions. Sixty percent of discovered SNPs corresponded to transitions while 40% were transversions. Interestingly, fifty eight percent of the SNPs were found in genic regions while 42% were found in intergenic regions. Further, a high percentage of genic SNPs was found in exons (65% and 64% for the A and C genomes, respectively). Two different genotyping assays were used to validate the discovered SNPs. Validation rates ranged from 61.5% to 84% of tested SNPs, underpinning the effectiveness of this SNP discovery approach. Most importantly, the discovered SNPs were associated with agronomically important regions of the B. napus genome generating a novel data resource for research and breeding this crop species.


Subject(s)
Brassica napus/genetics , DNA, Plant/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Genome, Plant/genetics , Genotype , Introns/genetics , Quantitative Trait Loci/genetics , Reproducibility of Results
6.
Theor Appl Genet ; 124(7): 1215-28, 2012 May.
Article in English | MEDLINE | ID: mdl-22241480

ABSTRACT

The extent of genome redundancy exhibited by Brassica species provides a model to study the evolutionary fate of multi-copy genes and the effects of polyploidy in economically important crops. Phytoene synthase (PSY) catalyzes the first committed reaction of the carotenoid biosynthetic pathway, which has been shown to be rate-limiting in Brassica napus seeds. In Arabidopsis thaliana, a single PSY gene (AtPSY) regulates phytoene synthesis in all tissues. Considering that diploid Brassica genomes contain three Arabidopsis-like subgenomes, the objectives of the present work were to determine whether PSY gene families exist in B. napus (AACC) and its diploid progenitor species, Brassica rapa (AA) and Brassica oleracea (CC); to establish the level of retention of Brassica PSY genes; to map PSY gene family members in the A and C genomes and to compare Brassica PSY gene expression patterns. A total of 12 PSY homologues were identified, 6 in B. napus (BnaX.PSY.a-f) and 3 in B. rapa (BraA.PSY.a-c) and B. oleracea (BolC.PSY.a-c). Indeed, with six members, B. napus has the largest PSY gene family described to date. Sequence comparison between AtPSY and Brassica PSY genes revealed a highly conserved gene structure and identity percentages above 85% at the coding sequence (CDS) level. Altogether, our data indicate that PSY gene family expansion preceded the speciation of B. rapa and B. oleracea, dating back to the paralogous subgenome triplication event. In these three Brassica species, all PSY homologues are expressed, exhibiting overlapping redundancy and signs of subfunctionalization among photosynthetic and non-photosynthetic tissues. This evidence supports the hypothesis that functional divergence of PSY gene expression facilitates the accumulation of high levels of carotenoids in chromoplast-rich tissues. Thus, functional retention of triplicated Brassica PSY genes could be at least partially explained by the selective advantage provided by increased levels of gene product in floral organs. A better understanding of carotenogenesis in Brassica will aid in the future development of transgenic and conventional cultivars with carotenoid-enriched oil.


Subject(s)
Alkyl and Aryl Transferases/genetics , Brassica napus/enzymology , Brassica napus/genetics , Base Sequence , Chromosome Mapping , DNA, Plant/genetics , Evolution, Molecular , Gene Dosage , Genes, Plant , Genome, Plant , Genotype , Geranylgeranyl-Diphosphate Geranylgeranyltransferase , Phylogeny , Polymorphism, Genetic , Sequence Analysis, DNA
7.
Genetics ; 186(4): 1451-65, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20837996

ABSTRACT

Genetic correlations are expected to be high among functionally related traits and lower between groups of traits with distinct functions (e.g., reproductive vs. resource-acquisition traits). Here, we explore the quantitative-genetic and QTL architecture of floral organ sizes, vegetative traits, and life history in a set of Brassica rapa recombinant inbred lines within and across field and greenhouse environments. Floral organ lengths were strongly positively correlated within both environments, and analysis of standardized G-matrices indicates that the structure of genetic correlations is ∼80% conserved across environments. Consistent with these correlations, we detected a total of 19 and 21 additive-effect floral QTL in the field and the greenhouse, respectively, and individual QTL typically affected multiple organ types. Interestingly, QTL×QTL epistasis also appeared to contribute to observed genetic correlations; i.e., interactions between two QTL had similar effects on filament length and two estimates of petal size. Although floral and nonfloral traits are hypothesized to be genetically decoupled, correlations between floral organ size and both vegetative and life-history traits were highly significant in the greenhouse; G-matrices of floral and vegetative traits as well as floral and life-history traits differed across environments. Correspondingly, many QTL (45% of those mapped in the greenhouse) showed environmental interactions, including approximately even numbers of floral and nonfloral QTL. Most instances of QTL×QTL epistasis for floral traits were environment dependent.


Subject(s)
Environment , Flowers/genetics , Quantitative Trait Loci , Epistasis, Genetic , Flowers/growth & development
8.
Theor Appl Genet ; 120(1): 31-43, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19784615

ABSTRACT

Publicly available genomic tools help researchers integrate information and make new discoveries. In this paper, we describe the development of immortal mapping populations of rapid cycling, self-compatible lines, molecular markers, and linkage maps for Brassica rapa and B. oleracea and make the data and germplasm available to the Brassica research community. The B. rapa population consists of 160 recombinant inbred (RI) lines derived from the cross of highly inbred lines of rapid cycling and yellow sarson B. rapa. The B. oleracea population consists of 155 double haploid (DH) lines derived from an F1 cross between two DH lines, rapid cycling and broccoli. A total of 120 RFLP probes, 146 SSR markers, and one phenotypic trait (flower color) were used to construct genetic linkage maps for both species. The B. rapa map consists of 224 molecular markers distributed along 10 linkage groups (A1-A10) with a total distance of 1125.3 cM and a marker density of 5.7 cM/marker. The B. oleracea genetic map consists of 279 molecular markers and one phenotypic marker distributed along nine linkage groups (C1-C9) with a total distance of 891.4 cM and a marker density of 3.2 cM/marker. A syntenic analysis with Arabidopsis thaliana identified collinear genomic blocks that are in agreement with previous studies, reinforcing the idea of conserved chromosomal regions across the Brassicaceae.


Subject(s)
Brassica rapa/genetics , Brassica/genetics , Chromosome Mapping , Databases, Genetic , Genetic Linkage , Genetics, Population , Genome, Plant , Arabidopsis/genetics , Chromosomes, Plant , Crops, Agricultural/genetics , Crosses, Genetic , Genes, Plant , Genetic Markers
9.
Theor Appl Genet ; 117(6): 977-85, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18651126

ABSTRACT

The traditional development of simple sequence repeat (SSR) or microsatellite markers by probe hybridization can be time-consuming and requires the use of specialized laboratory equipment. In this study, probe hybridization was circumvented by using sequence information on 3,500 genomic clones mainly from Brassica oleracea to identify di, tri, tetra and penta-nucleotide repeats. A total of 587 primer pairs flanking SSR were developed using this approach. From these, 420 SSR markers amplified DNA in two parental lines of B. rapa (26% were polymorphic) and 523 in two parental lines of B. oleracea (32% were polymorphic). A diverse array of motif types was identified, characterized and compared with traditional SSR detection methods. The most abundant motifs found were di- (38%) and trinucleotides (33%) followed by penta- (16%) and tetranucleotide (13%) motifs. The type of motif class, motif length and repeat were not indicative of polymorphisms. The frequency of B. oleracea SSRs in genomic shotgun sequence was estimated to be 1 every 4 Kb. In general, the average motif length and repeat numbers were shorter than those obtained previously by probe hybridization, and they contained a more balanced representation of SSR motif types in the genome by identifying those that do not hybridize well to DNA probes. Brassica genomic DNA sequence information is a promising resource for developing a large number of SSR molecular markers in Brassica species.


Subject(s)
Brassica/genetics , DNA, Plant/genetics , Minisatellite Repeats , Base Sequence , Brassica/classification , Brassica rapa/genetics , Genetic Markers , Genetic Techniques , Genome, Plant , Genotype , Polymorphism, Genetic , Species Specificity
10.
Plant Cell ; 19(11): 3403-17, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18024568

ABSTRACT

Many previous studies have provided evidence for genome changes in polyploids, but there are little data on the overall population dynamics of genome change and whether it causes phenotypic variability. We analyzed genetic, epigenetic, gene expression, and phenotypic changes in approximately 50 resynthesized Brassica napus lines independently derived by hybridizing double haploids of Brassica oleracea and Brassica rapa. A previous analysis of the first generation (S0) found that genetic changes were rare, and cytosine methylation changes were frequent. Our analysis of a later generation found that most S0 methylation changes remained fixed in their S5 progeny, although there were some reversions and new methylation changes. Genetic changes were much more frequent in the S5 generation, occurring in every line with lines normally distributed for number of changes. Genetic changes were detected on 36 of the 38 chromosomes of the S5 allopolyploids and were not random across the genome. DNA fragment losses within lines often occurred at linked marker loci, and most fragment losses co-occurred with intensification of signal from homoeologous markers, indicating that the changes were due to homoeologous nonreciprocal transpositions (HNRTs). HNRTs between chromosomes A1 and C1 initiated in early generations, occurred in successive generations, and segregated, consistent with a recombination mechanism. HNRTs and deletions were correlated with qualitative changes in the expression of specific homoeologous genes and anonymous cDNA amplified fragment length polymorphisms and with phenotypic variation among S5 polyploids. Our data indicate that exchanges among homoeologous chromosomes are a major mechanism creating novel allele combinations and phenotypic variation in newly formed B. napus polyploids.


Subject(s)
Brassica napus/genetics , Gene Expression Regulation, Plant , Genome, Plant/genetics , Amplified Fragment Length Polymorphism Analysis , Chromosome Segregation , Chromosomes, Plant/metabolism , DNA Methylation , DNA Transposable Elements , DNA, Complementary/metabolism , DNA, Plant/metabolism , Genetic Linkage , Genetic Markers , Phenotype , Phylogeny , Polymorphism, Single-Stranded Conformational , Polyploidy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombination, Genetic/genetics
11.
Genetics ; 174(1): 179-90, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16751662

ABSTRACT

Subfunctionalization is the process by which a pair of duplicated genes, or paralogs, experiences a reduction of individual expression patterns or function while still reproducing the complete expression pattern and function of the ancestral gene. Two germin-like protein (GLP)-encoding genes, GerB and GerF, are paralogs that belong to a small gene family in barley (Hordeum vulgare). Both genes share high nucleotide sequence similarity in coding and noncoding regions and encode identical apoplastic proteins. The use of RNA gel blots, coupled with single-stranded conformation polymorphism (SSCP) analysis of RT-PCR products, elucidated the developmental and tissue-specific expression patterns of each gene. Individual expression patterns provided evidence of both overlapping redundancy and early subfunctionalization. GerB is predominantly expressed in developing shoots, while GerF is predominantly expressed in seedling roots, developing spikes, and pericarp/testa. GerF promoter deletion studies located a region (-356/-97) responsible for high promoter activity and showed the ability of GerB and GerF upstream regions to drive gfp expression in coleoptiles, epicarps, and lemma/palea of developing spikes. The observed expression patterns are consistent with proposed roles in plant development and defense mechanisms for this gene family. These roles may explain why redundancy has been selectively maintained in this duplicate gene pair.


Subject(s)
Gene Duplication , Gene Expression Regulation, Plant , Glycoproteins/genetics , Glycoproteins/metabolism , Hordeum/genetics , Hordeum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Base Sequence , DNA, Complementary/analysis , Fusarium/pathogenicity , Gene Expression Profiling , Gonads/metabolism , Hordeum/cytology , Hordeum/growth & development , Molecular Sequence Data , Plant Diseases/genetics , Polymorphism, Single-Stranded Conformational , Promoter Regions, Genetic , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...