Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Sleep Breath ; 28(3): 1285-1292, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38365985

ABSTRACT

PURPOSE: Nocturnal asthma is a sign of asthma worsening and could be partially due to more fluid drawn into the thorax during sleep by gravitational force and/or pharyngeal collapse in those with obstructive sleep apnea. Wearing compression stockings during the day reduces fluid shift from the legs to the neck overnight. However, the potential effect of wearing compression stockings to reduce fluid accumulation in the leg and to improve nocturnal small airway narrowing in patients with asthma has not been investigated. This study investigates whether reducing leg fluid volume by wearing compression stockings during the day would attenuate small airway narrowing in patients with asthma before and after sleep. METHODS: We enrolled 11 participants with asthma. All participants underwent overnight polysomnography with or without wearing compression stockings for 2 weeks. Before and after sleep, leg fluid volume (LFV) was measured by bioelectrical impedance, and airway narrowing was primarily assessed by respiratory system resistance and reactance at 5 Hz (R5 and X5 respectively) using oscillometry. RESULTS: After 2 weeks of wearing compression stockings, the LFV measured in the evening was reduced (∆ = - 192.6 ± 248.3 ml, p = 0.02), and R5 and X5 improved (∆ = - 0.7 ± 0.9 cmH2O/L/s, p = 0.03 and 0.2 ± 1.4 cmH2O/L/s, p = 0.05 respectively). No changes were observed in the morning. CONCLUSIONS: Preventing fluid retention in the legs by wearing compression stockings for 2 weeks during the day, reduced LFV and airway narrowing in the evening in all participants with asthma, but not in the morning after sleep.


Subject(s)
Asthma , Polysomnography , Stockings, Compression , Humans , Male , Female , Pilot Projects , Adult , Asthma/therapy , Asthma/physiopathology , Middle Aged , Leg/physiopathology , Sleep Apnea, Obstructive/therapy , Sleep Apnea, Obstructive/physiopathology , Fluid Shifts/physiology , Airway Resistance/physiology , Airway Obstruction/therapy , Airway Obstruction/prevention & control , Airway Obstruction/physiopathology
2.
Respir Res ; 22(1): 266, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34666750

ABSTRACT

INTRODUCTION: Over 300 million people in the world live with asthma, resulting in 500,000 annual global deaths with future increases expected. It is estimated that around 50-80% of asthma exacerbations are due to viral infections. Currently, a combination of long-acting beta agonists (LABA) for bronchodilation and glucocorticoids (GCS) to control lung inflammation represent the dominant strategy for the management of asthma, however, it is still sub-optimal in 35-50% of moderate-severe asthmatics resulting in persistent lung inflammation, impairment of lung function, and risk of mortality. Mechanistically, LABA/GCS combination therapy results in synergistic efficacy mediated by intracellular cyclic adenosine monophosphate (cAMP). HYPOTHESIS: Increasing intracellular cAMP during LABA/GCS combination therapy via inhibiting phosphodiesterase 4 (PDE4) and/or blocking the export of cAMP by ATP Binding Cassette Transporter C4 (ABCC4), will potentiate anti-inflammatory responses of mainstay LABA/GCS therapy. METHODS: Expression and localization experiments were performed using in situ hybridization and immunohistochemistry in human lung tissue from healthy subjects, while confirmatory transcript and protein expression analyses were performed in primary human airway epithelial cells and cell lines. Intervention experiments were performed on the human airway epithelial cell line, HBEC-6KT, by pre-treatment with combinations of LABA/GCS with PDE4 and/or ABCC4 inhibitors followed by Poly I:C or imiquimod challenge as a model for viral stimuli. Cytokine readouts for IL-6, IL-8, CXCL10/IP-10, and CCL5/RANTES were quantified by ELISA. RESULTS: Using archived human lung and human airway epithelial cells, ABCC4 gene and protein expression were confirmed in vitro and in situ. LABA/GCS attenuation of Poly I:C or imiquimod-induced IL-6 and IL-8 were potentiated with ABCC4 and PDE4 inhibition, which was greater when ABCC4 and PDE4 inhibition was combined. Modulation of cAMP levels had no impact on LABA/GCS modulation of Poly I:C-induced CXCL10/IP-10 or CCL5/RANTES. CONCLUSION: Modulation of intracellular cAMP levels by PDE4 or ABCC4 inhibition potentiates LABA/GCS efficacy in human airway epithelial cells challenged with viral stimuli. The data suggest further exploration of the value of adding cAMP modulators to mainstay LABA/GCS therapy in asthma for potentiated anti-inflammatory efficacy.


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Budesonide/pharmacology , Cyclic AMP/metabolism , Epithelial Cells/drug effects , Formoterol Fumarate/pharmacology , Glucocorticoids/pharmacology , Lung/drug effects , Aminopyridines/pharmacology , Benzamides/pharmacology , Benzothiazoles/pharmacology , Cell Line , Chemokines/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclohexanecarboxylic Acids/pharmacology , Cyclopropanes/pharmacology , Drug Synergism , Drug Therapy, Combination , Epithelial Cells/metabolism , Humans , Lung/metabolism , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/metabolism , Nitriles/pharmacology , Phosphodiesterase 4 Inhibitors/pharmacology , Rolipram/pharmacology , Second Messenger Systems , Triazoles/pharmacology
3.
Biomedicines ; 9(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34572299

ABSTRACT

Diabetic kidney disease (DKD) is caused by the overproduction of extracellular matrix proteins (ECM) by glomerular mesangial cells (MCs). We previously showed that high glucose (HG) induces cell surface translocation of GRP78 (csGRP78), mediating PI3K/Akt activation and downstream ECM production. Activated alpha 2-macroglobulin (α2M*) is a ligand known to initiate this signaling cascade. Importantly, increased α2M was observed in diabetic patients' serum, saliva, and glomeruli. Primary MCs were used to assess HG responses. The role of α2M* was assessed using siRNA, a neutralizing antibody and inhibitory peptide. Kidneys from type 1 diabetic Akita and CD1 mice and human DKD patients were stained for α2M/α2M*. α2M transcript and protein were significantly increased with HG in vitro and in vivo in diabetic kidneys. A similar increase in α2M* was seen in media and kidneys, where it localized to the mesangium. No appreciable α2M* was seen in normal kidneys. Knockdown or neutralization of α2M/α2M* inhibited HG-induced profibrotic signaling (Akt activation) and matrix/cytokine upregulation (collagen IV, fibronectin, CTGF, and TGFß1). In patients with established DKD, urinary α2M* and TGFß1 levels were correlated. These data reveal an important role for α2M* in the pathogenesis of DKD and support further investigation as a potential novel therapeutic target.

4.
Methods Mol Biol ; 2299: 291-321, 2021.
Article in English | MEDLINE | ID: mdl-34028751

ABSTRACT

The drug discovery pipeline, from discovery of therapeutic targets through preclinical and clinical development phases, to an approved product by health authorities, is a time-consuming and costly process, where a lead candidates' success at reaching the final stage is rare. Although the time from discovery to final approval has been reduced over the last decade, there is still potential to further optimize and streamline the evaluation process of each candidate as it moves through the different development phases. In this book chapter, we describe our preclinical strategies and overall decision-making process designed to evaluate the tolerability and efficacy of therapeutic candidates suitable for patients diagnosed with fibrotic lung disease. We also describe the benefits of conducting preliminary discovery trials, to aid in the selection of suitable primary and secondary outcomes to be further evaluated and assessed in subsequent internal and external validation studies. We outline all relevant research methodologies and protocols routinely performed by our research group and hope that these strategies and protocols will be a useful guide for biomedical and translational researchers aiming to develop safe and beneficial therapies for patients with fibrotic lung disease.


Subject(s)
Bleomycin/adverse effects , Gene Regulatory Networks/drug effects , Pulmonary Fibrosis/drug therapy , Animals , Computational Biology/methods , Decision Making , Disease Models, Animal , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Humans , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism
6.
Sci Rep ; 11(1): 904, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441643

ABSTRACT

Cystic fibrosis (CF) is a genetic disease characterized by CF transmembrane regulator (CFTR) dysfunction. With over 2000 CFTR variants identified, in addition to known patient to patient variability, there is a need for personalized treatment. The discovery of CFTR modulators has shown efficacy in certain CF populations, however there are still CF populations without valid therapeutic options. With evidence suggesting that single drug therapeutics are insufficient for optimal management of CF disease, there has been an increased pursuit of combinatorial therapies. Our aim was to test cyclic AMP (cAMP) modulation, through ATP Binding Cassette Transporter C4 (ABCC4) and phosphodiesterase-4 (PDE-4) inhibition, as a potential add-on therapeutic to a clinically approved CFTR modulator, VX-770, as a method for increasing CFTR activity. Human airway epithelial cells (Calu-3) were used to test the efficacy of cAMP modulation by ABCC4 and PDE-4 inhibition through a series of concentration-response studies. Our results showed that cAMP modulation, in combination with VX-770, led to an increase in CFTR activity via an increase in sensitivity when compared to treatment of VX-770 alone. Our study suggests that cAMP modulation has potential to be pursued as an add-on therapy for the optimal management of CF disease.


Subject(s)
Aminophenols/pharmacology , Cyclic AMP/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Quinolones/pharmacology , Bronchi/metabolism , Cell Line , Cells, Cultured , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cystic Fibrosis/physiopathology , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Therapy, Combination/methods , Epithelial Cells/metabolism , Humans , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology
7.
J Allergy Clin Immunol ; 143(3): 1087-1099.e4, 2019 03.
Article in English | MEDLINE | ID: mdl-29906527

ABSTRACT

BACKGROUND: Treatment of patients with cat allergy with peptides derived from Fel d 1 (the major cat allergen) ameliorated symptoms of cat allergy in phase 2 clinical trials. OBJECTIVE: We sought to demonstrate that the tolerance induced by Fel d 1 peptide immunotherapy can be exploited to reduce allergic responses to a second allergen, ovalbumin (OVA), in mice sensitized dually to OVA and Fel d 1. METHODS: Induction of tolerance to OVA was achieved through simultaneous exposure to both allergens after peptide treatment. Functional tolerance to each allergen was assessed in a model of allergic airways disease in which treated mice were protected from eosinophilia, goblet cell hyperplasia, and TH2 cell infiltration. RESULTS: Suppression of allergic responses to cat allergen challenge was associated with significant increases in numbers of CD4+CD25+Foxp3+ T cells, IL-10+ cells, and CD19+IL-10+ B cells, whereas the response to OVA was associated with a marked reduction in numbers of TH2 cytokine-secreting T cells and less prominent changes in outcomes associated with immune regulation. CONCLUSIONS: These observations suggest that immune tolerance induced by peptide immunotherapy can be used experimentally to treat an allergic response to another allergen and that the molecular mechanisms underlying induction of tolerance to a treatment-specific allergen and a bystander allergen might be different.


Subject(s)
Allergens/immunology , Desensitization, Immunologic , Glycoproteins/immunology , Hypersensitivity/therapy , Immune Tolerance , Ovalbumin/immunology , Peptides/immunology , Animals , B-Lymphocytes/immunology , Bystander Effect , Cytokines/immunology , Female , Hypersensitivity/immunology , Lung/immunology , Mice, Inbred BALB C , T-Lymphocytes/immunology
8.
J Appl Physiol (1985) ; 122(4): 809-816, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28082337

ABSTRACT

In asthma, supine posture and sleep increase intrathoracic airway narrowing. When humans are supine, because of gravity fluid moves out of the legs and accumulates in the thorax. We hypothesized that fluid shifting out of the legs into the thorax contributes to the intrathoracic airway narrowing in asthma. Healthy and asthmatic subjects sat for 30 min and then lay supine for 30 min. To simulate overnight fluid shift, supine subjects were randomized to receive increased fluid shift out of the legs with lower body positive pressure (LBPP, 10-30 min) or none (control) and crossed over. With forced oscillation at 5 Hz, respiratory resistance (R5) and reactance (X5, reflecting respiratory stiffness) and with bioelectrical impedance, leg and thoracic fluid volumes (LFV, TFV) were measured while subjects were seated and supine (0 min, 30 min). In 17 healthy subjects (age: 51.8 ± 10.9 yr, FEV1/FVC z score: -0.4 ± 1.1), changes in R5 and X5 were similar in both study arms (P > 0.05). In 15 asthmatic subjects (58.5 ± 9.8 yr, -2.1 ± 1.3), R5 and X5 increased in both arms (ΔR5: 0.6 ± 0.9 vs. 1.4 ± 0.8 cmH2O·l-1·s-1, ΔX5: 0.3 ± 0.7 vs. 1.1 ± 0.9 cmH2O·l-1·s-1). The increases in R5 and X5 were 2.3 and 3.7 times larger with LBPP than control, however (P = 0.008, P = 0.006). The main predictor of increases in R5 with LBPP was increases in TFV (r = 0.73, P = 0.002). In asthmatic subjects, the magnitude of increases in X5 with LBPP was comparable to that with posture change from sitting to supine (1.1 ± 0.9 vs. 1.4 ± 0.9 cmH2O·l-1·s-1, P = 0.32). We conclude that in asthmatic subjects fluid shifting from the legs to the thorax while supine contributed to increases in the respiratory resistance and stiffness.NEW & NOTEWORTHY In supine asthmatic subjects, application of positive pressure to the lower body caused appreciable increases in respiratory system resistance and stiffness. Moreover, these changes in respiratory mechanics correlated positively with increase in thoracic fluid volume. These findings suggest that fluid shifts from the lower body to the thorax may contribute to overnight intrathoracic airway narrowing and worsening of asthma symptoms.


Subject(s)
Asthma/metabolism , Asthma/physiopathology , Body Fluids/metabolism , Fluid Shifts/physiology , Respiratory System/metabolism , Respiratory System/physiopathology , Thorax/metabolism , Airway Resistance/physiology , Case-Control Studies , Cross-Over Studies , Double-Blind Method , Female , Humans , Leg/physiology , Male , Middle Aged , Pressure , Respiratory Mechanics/physiology , Supine Position/physiology , Thorax/physiopathology
9.
Front Physiol ; 8: 1012, 2017.
Article in English | MEDLINE | ID: mdl-29311954

ABSTRACT

Background: We have previously shown that when asthmatics go supine, fluid shifts out of the legs, accumulates in the thorax, and exacerbates lower airway narrowing. In the retrospective analysis of our previous work presented here, we test the hypothesis that the sensitivity of this process relates inversely to baseline caliber of the lower airways. Methods: Eighteen healthy (six women) and sixteen asthmatic subjects (nine women) sat for 30 min, and then lay supine for 30 min. While supine, lower body positive pressure (LBPP, 40 mm Hg) was applied to displace fluid from the legs similar in amount to the overnight fluid shift. Respiratory resistance and reactance at 5 Hz (R5 and X5) and leg and thoracic fluid volumes (LFV and TFV) were measured at the beginning and end of the supine period. Results: With LBPP, healthy, and asthmatic subjects had similar changes in the LFV and TFV (p = 0.3 and 0.1, respectively). Sensitivity to fluid shift, defined by ΔR5/ΔTFV, was larger in the asthmatics than in the healthy subjects (p = 0.0001), and correlated with baseline R5 in the supine position in the asthmatics (p = 0.7, p = 0.003). No such association was observed in the healthy subjects (p = 0.6). In the asthmatics, women showed a greater reduction in X5 than men with LBPP (p = 0.009). Conclusions: Smaller baseline airway caliber, as assessed by larger R5, was associated with increased sensitivity to fluid shift in the supine position. We conclude that asthmatics with narrower small airways such as obese asthma patients, women with asthma and those with severe asthma may be more sensitive to the effects fluid shift while supine as during sleep.

10.
JCI Insight ; 1(9)2016 Jun 16.
Article in English | MEDLINE | ID: mdl-27398409

ABSTRACT

Airway and/or lung remodeling, involving exaggerated extracellular matrix (ECM) protein deposition, is a critical feature common to pulmonary diseases including chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Fibulin-1 (Fbln1), an important ECM protein involved in matrix organization, may be involved in the pathogenesis of these diseases. We found that Fbln1 was increased in COPD patients and in cigarette smoke-induced (CS-induced) experimental COPD in mice. Genetic or therapeutic inhibition of Fbln1c protected against CS-induced airway fibrosis and emphysema-like alveolar enlargement. In experimental COPD, this occurred through disrupted collagen organization and interactions with fibronectin, periostin, and tenascin-c. Genetic inhibition of Fbln1c also reduced levels of pulmonary inflammatory cells and proinflammatory cytokines/chemokines (TNF-α, IL-33, and CXCL1) in experimental COPD. Fbln1c-/- mice also had reduced airway remodeling in experimental chronic asthma and pulmonary fibrosis. Our data show that Fbln1c may be a therapeutic target in chronic respiratory diseases.

11.
J Pathol ; 239(4): 411-25, 2016 08.
Article in English | MEDLINE | ID: mdl-27135434

ABSTRACT

Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) have been associated with fibrotic lung disease, although exactly how they modulate this process remains unclear. Here we investigated the role of GRP78, the main UPR regulator, in an experimental model of lung injury and fibrosis. Grp78(+/-) , Chop(-/-) and wild type C57BL6/J mice were exposed to bleomycin by oropharyngeal intubation and lungs were examined at days 7 and 21. We demonstrate here that Grp78(+/-) mice were strongly protected from bleomycin-induced fibrosis, as shown by immunohistochemical analysis, collagen content and lung function measurements. In the inflammatory phase of this model, a reduced number of lung macrophages associated with an increased number of TUNEL-positive cells were observed in Grp78(+/-) mice. Dual immunohistochemical and in situ hybridization experiments showed that the macrophage population from the protected Grp78(+/-) mice was also strongly positive for cleaved caspase-3 and Chop mRNA, respectively. In contrast, the administration of bleomycin to Chop(-/-) mice resulted in increased quasi-static elastance and extracellular matrix deposition associated with an increased number of parenchymal arginase-1-positive macrophages that were negative for cleaved caspase-3. The data presented indicate that the UPR is activated in fibrotic lung tissue and strongly localized to macrophages. GRP78- and CHOP-mediated macrophage apoptosis was found to protect against bleomycin-induced fibrosis. Overall, we demonstrate here that the fibrotic response to bleomycin is dependent on GRP78-mediated events and provides evidence that macrophage polarization and apoptosis may play a role in this process. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Apoptosis/genetics , Heat-Shock Proteins/metabolism , Macrophages, Alveolar/metabolism , Pulmonary Fibrosis/metabolism , Transcription Factor CHOP/metabolism , Animals , Bleomycin , Caspase 3/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/genetics , Heat-Shock Proteins/genetics , Macrophages, Alveolar/pathology , Mice , Mice, Knockout , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Transcription Factor CHOP/genetics , Unfolded Protein Response/genetics
12.
PLoS One ; 9(10): e109991, 2014.
Article in English | MEDLINE | ID: mdl-25279605

ABSTRACT

BACKGROUND: Asthmatic responses involve a systemic component where activation of the bone marrow leads to mobilization and lung-homing of progenitor cells. This traffic may be driven by stromal cell derived factor-1 (SDF-1), a potent progenitor chemoattractant. We have previously shown that airway angiogenesis, an early remodeling event, can be inhibited by preventing the migration of endothelial progenitor cells (EPC) to the lungs. Given intranasally, AMD3100, a CXCR4 antagonist that inhibits SDF-1 mediated effects, attenuated allergen-induced lung-homing of EPC, vascularization of pulmonary tissue, airway eosinophilia and development of airway hyperresponsiveness. Since SDF-1 is also an eosinophil chemoattractant, we investigated, using a transgenic eosinophil deficient mouse strain (PHIL) whether EPC lung accumulation and lung vascularization in allergic airway responses is dependent on eosinophilic inflammation. METHODS: Wild-type (WT) BALB/c and eosinophil deficient (PHIL) mice were sensitized to house dust mite (HDM) using a chronic exposure protocol and treated with AMD3100 to modulate SDF-1 stimulated progenitor traffic. Following HDM challenge, lung-extracted EPCs were enumerated along with airway inflammation, microvessel density (MVD) and airway methacholine responsiveness (AHR). RESULTS: Following Ag sensitization, both WT and PHIL mice exhibited HDM-induced increase in airway inflammation, EPC lung-accumulation, lung angiogenesis and AHR. Treatment with AMD3100 significantly attenuated outcome measures in both groups of mice. Significantly lower levels of EPC and a trend for lower vascularization were detected in PHIL versus WT mice. CONCLUSIONS: This study shows that while allergen-induced lung-homing of endothelial progenitor cells, increased tissue vascularization and development lung dysfunction can occur in the absence of eosinophils, the presence of these cells worsens the pathology of the allergic response.


Subject(s)
Asthma/immunology , Endothelial Progenitor Cells/immunology , Eosinophils/immunology , Lung/immunology , Neovascularization, Pathologic/immunology , Pyroglyphidae/immunology , Respiratory Hypersensitivity/immunology , Respiratory System/immunology , Allergens/immunology , Animals , Bronchoalveolar Lavage Fluid , Cells, Cultured , Disease Models, Animal , Female , Flow Cytometry , Mice , Mice, Inbred BALB C
13.
Am J Respir Cell Mol Biol ; 48(6): 694-702, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23470627

ABSTRACT

Up-regulation of arginase contributes to airways hyperresponsiveness (AHR) in asthma by reducing L-arginine bioavailability for the nitric oxide (NO) synthase isozymes. The product of arginase activity, L-ornithine, can be metabolized into polyamines by ornithine decarboxylase. We tested the hypothesis that increases in L-ornithine-derived polyamines contribute to AHR in mouse models of allergic airways inflammation. After measuring significantly increased polyamine levels in sputum samples from human subjects with asthma after allergen challenge, we used acute and subacute ovalbumin sensitization and challenge mouse models of allergic airways inflammation and naive mice to investigate the relationship of AHR to methacholine and polyamines in the lung. We found that spermine levels were elevated significantly in lungs from the acute model, which exhibits robust AHR, but not in the subacute murine model of asthma, which does not develop AHR. Intratracheal administration of spermine significantly augmented airways responsiveness to methacholine in both naive mice and mice with subacute airways inflammation, and reduced nitrite/nitrate levels in lung homogenates, suggesting that the AHR developed as a consequence of inhibition of constitutive NO production in the airways. Chronic inhibition of polyamine synthesis using an ornithine decarboxylase inhibitor significantly reduced polyamine levels, restored nitrite/nitrate levels to normal, and abrogated the AHR to methacholine in the acute model of allergic airways inflammation. We demonstrate that spermine increases airways responsiveness to methacholine, likely through inhibition of constitutive NO synthesis. Thus, inhibition of polyamine production may represent a new therapeutic target to treat airway obstruction in allergic asthma.


Subject(s)
Asthma/pathology , Hypersensitivity/pathology , Ornithine/metabolism , Polyamines/metabolism , Adolescent , Adult , Animals , Asthma/drug therapy , Asthma/immunology , Asthma/metabolism , Disease Models, Animal , Eflornithine/pharmacology , Female , Humans , Hypersensitivity/drug therapy , Hypersensitivity/immunology , Hypersensitivity/metabolism , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Lung/drug effects , Lung/immunology , Lung/metabolism , Lung/pathology , Male , Methacholine Chloride/metabolism , Methacholine Chloride/pharmacology , Mice , Middle Aged , Nitrates/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase/immunology , Nitric Oxide Synthase/metabolism , Ornithine Decarboxylase/metabolism , Ornithine Decarboxylase Inhibitors , Ovalbumin/adverse effects , Ovalbumin/immunology , Polyamines/antagonists & inhibitors , Spermine/administration & dosage , Spermine/adverse effects , Spermine/pharmacology , Sputum/metabolism , Young Adult
14.
J Allergy Clin Immunol ; 131(3): 752-62, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23380220

ABSTRACT

BACKGROUND: Cigarette smoke-induced chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory disorder of the lung. The development of effective therapies for COPD has been hampered by the lack of an animal model that mimics the human disease in a short timeframe. OBJECTIVES: We sought to create an early-onset mouse model of cigarette smoke-induced COPD that develops the hallmark features of the human condition in a short time-frame. We also sought to use this model to better understand pathogenesis and the roles of macrophages and mast cells (MCs) in patients with COPD. METHODS: Tightly controlled amounts of cigarette smoke were delivered to the airways of mice, and the development of the pathologic features of COPD was assessed. The roles of macrophages and MC tryptase in pathogenesis were evaluated by using depletion and in vitro studies and MC protease 6-deficient mice. RESULTS: After just 8 weeks of smoke exposure, wild-type mice had chronic inflammation, mucus hypersecretion, airway remodeling, emphysema, and reduced lung function. These characteristic features of COPD were glucocorticoid resistant and did not spontaneously resolve. Systemic effects on skeletal muscle and the heart and increased susceptibility to respiratory tract infections also were observed. Macrophages and tryptase-expressing MCs were required for the development of COPD. Recombinant MC tryptase induced proinflammatory responses from cultured macrophages. CONCLUSION: A short-term mouse model of cigarette smoke-induced COPD was developed in which the characteristic features of the disease were induced more rapidly than in existing models. The model can be used to better understand COPD pathogenesis, and we show a requirement for macrophages and tryptase-expressing MCs.


Subject(s)
Disease Models, Animal , Pulmonary Disease, Chronic Obstructive/immunology , Smoke/adverse effects , Tryptases/immunology , Airway Remodeling , Animals , Macrophages/immunology , Mast Cells/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Respiratory Function Tests , Nicotiana , Tryptases/deficiency , Tryptases/genetics
15.
Int J Toxicol ; 30(2): 244-52, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21378373

ABSTRACT

Many women are unable to quit smoking during pregnancy and therefore are prescribed drugs, including nicotine (nicotine replacement therapy [NRT]), to aid with smoking cessation. However, the consequences to the offspring of pregnant NRT users have not been well studied. The goals of this study were to determine the consequences of fetal and neonatal exposure to nicotine on lung development and function. Female rats were exposed to nicotine for 2 weeks prior to mating until weaning. Lungs were collected from saline and nicotine-treated rats from birth to adulthood to assess postnatal lung structure and function. Although nicotine exposure altered alveolarization at weaning, an effect that resolved by adulthood, it did not affect lung function at any of the ages investigated. However, nicotine exposure significantly decreased lung vascularization. The current study suggests that perinatal exposure to nicotine alters lung development, an effect which may be mediated via decreased vascular endothelial growth factor (VEGF) signaling.


Subject(s)
Lung/growth & development , Nicotine/adverse effects , Prenatal Exposure Delayed Effects , Receptors, Vascular Endothelial Growth Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Animals, Newborn , Female , Fetus/drug effects , Lung/drug effects , Male , Pregnancy , Rats , Rats, Wistar , Signal Transduction , Vascular Endothelial Growth Factor A/genetics
16.
Am J Respir Cell Mol Biol ; 45(3): 566-72, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21216974

ABSTRACT

Airway smooth muscle (ASM) hyperplasia in asthma likely contributes considerably to functional changes. Investigating the mechanisms behind proliferation of these cells may lead to therapeutic benefit. Platelet-derived growth factor (PDGF)-BB is a well known ASM mitogen in vitro but has yet to be directly explored using in vivo mouse models in the context of ASM proliferation and airway responsiveness. To determine the in vivo influence of PDGF-BB on gene transcripts encoding contractile proteins, ASM proliferation, and airway physiology, we used an adenovirus overexpression system and a model of chronic allergen exposure. We used adenovirus technology to selectively overexpress PDGF-BB in the airway epithelium of mice. Outcome measurements, including airway physiology, real time RT-PCR measurements, proliferating cell nuclear antigen staining, and airway smooth muscle quantification, were performed 7 days after exposure. The same outcome measurements were performed 24 hours and 4 weeks after a chronic allergen exposure model. PDGF-BB overexpression resulted in airway hyperresponsiveness, decreased lung compliance, increased airway smooth muscle cell numbers, positive proliferating cell nuclear antigen-stained airway smooth muscle cells, and a reduction in genes encoding contractile proteins. Chronic allergen exposure resulted in elevations in lung lavage PDGF-BB, which were observed in conjunction with changes in gene transcript expression encoding contractile proteins and ASM proliferation. We demonstrate for the first time in vivo that PDGF-BB induces ASM hyperplasia and changes in lung mechanics in mice and that, during periods of allergen exposure changes in lung, PDGF-BB are associated with changes in airway structure and function.


Subject(s)
Lung/metabolism , Muscle, Smooth/cytology , Platelet-Derived Growth Factor/metabolism , Adenoviridae/genetics , Animals , Asthma/metabolism , Becaplermin , Cell Proliferation , Dose-Response Relationship, Drug , Female , Gene Expression Regulation , Mice , Mice, Inbred BALB C , Models, Biological , Proliferating Cell Nuclear Antigen/biosynthesis , Proto-Oncogene Proteins c-sis , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
17.
Am J Respir Cell Mol Biol ; 44(4): 431-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20724554

ABSTRACT

Clinical reports of areas of damaged airway epithelium associated with shed epithelial cells in bronchoalveolar lavage fluid, aberrant epithelial repair processes, and altered cytokine and growth factor release have highlighted some fundamental differences between the airway epithelium in individuals with and without asthma. However, the consequences of these epithelial changes are not clearly defined, and may be difficult to assess in the clinic. In this Review, we answer the two questions. (1) What in vivo models and methods have been used to inform us about airway epithelium damage, repair, and immune responses? Our response focuses on genetic influences as well as allergen exposure, environmental/chemical, and mechanical models. (2) How can we improve on existing mouse models to understand changes in airway epithelium biology in asthma? In answering the second question, we include exciting recent studies that have combined multiple exposure methods and/or epithelium-centric outcome measurements. By addressing these two questions, we propose that future interrogation of epithelial responses of both existing and nascent mouse models may provide greater understanding of the mechanisms underlying airway inflammation and remodeling in asthma with hope of generating novel therapeutic targets.


Subject(s)
Asthma/pathology , Disease Models, Animal , Respiratory Mucosa/pathology , Animals , Mice , Respiratory Mucosa/immunology
18.
Am J Physiol Lung Cell Mol Physiol ; 299(1): L98-L108, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20435686

ABSTRACT

Understanding how tissue remodeling affects airway responsiveness is of key importance, but experimental data bearing on this issue remain scant. We used lung explants to investigate the effects of enzymatic digestion on the rate and magnitude of airway narrowing induced by acetylcholine. To link the observed changes in narrowing dynamics to the degree of alteration in tissue mechanics, we compared our experimental results with predictions made by a computational model of a dynamically contracting elastic airway embedded in elastic parenchyma. We found that treatment of explanted airways with two different proteases (elastase and collagenase) resulted in differential effects on the dynamics of airway narrowing following application of ACh. Histological corroboration of these different effects is manifest in different patterns of elimination of collagen and elastin from within the airway wall and the surrounding parenchyma. Simulations with a computational model of a dynamically contracting airway embedded in elastic parenchyma suggest that elastase exerts its functional effects predominately through a reduction in parenchymal tethering, while the effects of collagenase are more related to a reduction in airway wall stiffness. We conclude that airway and parenchymal remodeling as a result of protease activity can have varied effects on the loads opposing ASM shortening, with corresponding consequences for airway responsiveness.


Subject(s)
Bronchoconstriction/physiology , Muscle, Smooth/physiology , Respiratory System , Acetylcholine/pharmacology , Animals , Bronchoconstriction/drug effects , Elasticity , Female , Mice , Mice, Inbred BALB C , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Smooth/drug effects , Pancreatic Elastase , Respiratory System/anatomy & histology , Respiratory System/metabolism , Swine
20.
Chest ; 136(5): 1301-1307, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19617403

ABSTRACT

BACKGROUND: Significant changes in asthma and atopy occur throughout the menstrual cycle. We hypothesized that the characteristics of asthma (eg, symptoms, exhaled nitric oxide [eNO] levels as a marker of airway inflammation, pulmonary function, and atopy) vary throughout the menstrual cycle in relation to changes in the levels of estrogen or progesterone and that this variation is attenuated in women using oral contraception (OC). METHODS: Seventeen women with asthma were studied over the course of their menstrual cycle through daily measurements of symptoms, eNO, spirometry, 17beta-estradiol, and progesterone levels, and through the performance of alternate-day allergy skin-prick tests (SPTs). RESULTS: Of 534 potential daily visits, 526 (98.5%) were completed. Women not using OC (n = 8) had higher mean eNO levels (48.2 parts per billion [ppb]; 95% CI, 43.1 ppb to 53.3 ppb) than women using OC (27.0 ppb; 95% CI, 24.2 ppb to 29.7 ppb; p

Subject(s)
Asthma/physiopathology , Exhalation/physiology , Menstrual Cycle/physiology , Nitric Oxide/analysis , Progesterone/analysis , Adult , Contraceptives, Oral , Estradiol/analysis , Female , Forced Expiratory Volume , Humans , Middle Aged , Saliva/physiology , Spirometry
SELECTION OF CITATIONS
SEARCH DETAIL
...