Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 33(7): 1204-1212, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35609180

ABSTRACT

There is an increasing emphasis on the critical evaluation of interbatch purity and physical stability of therapeutic peptides. This is due to concerns over the impact that product- and process-related impurities may have on safety and efficacy of this class of drug. Aspartic acid isomerization to isoaspartic acid is a common isobaric impurity that can be very difficult to identify without first synthesizing isoAsp peptide standards for comparison by chromatography. As such, analytical tools that can determine if an Asp residue has isomerized, as well as the site of isomerization within the peptide sequence, are highly sought after. Ion mobility-mass spectrometry is a conformation-selective method that has developed rapidly in recent years particularly with the commercialization of traveling wave ion mobility instruments. This study employed a cyclic ion mobility (cIMS) mass spectrometry system to investigate the conformational characteristics of a therapeutic peptide and three synthetic isomeric forms, each with a single Asp residue isomerized to isoAsp. cIMS was able to not only show distinct conformational differences between each peptide but crucially, in conjunction with a simple workflow for comparing ion mobility data, it correctly located which Asp residue in each peptide had isomerized to isoAsp. This work highlights the value of cIMS as a potential screening tool in the analysis of therapeutic peptides prone to the formation of isoAsp impurities.


Subject(s)
Aspartic Acid , Peptides , Aspartic Acid/chemistry , Chromatography, High Pressure Liquid/methods , Isomerism , Mass Spectrometry/methods , Peptides/chemistry
2.
J Chromatogr A ; 1670: 462944, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35344792

ABSTRACT

Monoclonal antibodies (mAbs) are extremely complex due to the presence of structural modifications resulting from enzymatic and chemical reactions such as glycosylation, glycation, deamidation, isomerisation, oxidation, aggregation and fragmentation. Size and charge variants analysis are carried out from the early stages of drug development throughout product lifetime to investigate product degradation pathways and optimise process conditions. However, conventional analytical workstreams for size and charge variant characterization are both time and sample demanding, requiring the application of multiple analytical methods. This study presents the development of a novel 2D-LC/MS approach combining both aggregate and charge variant profiling of a mAb candidate in a single method. Aggregate quantification was performed in the first dimension (1D) by size exclusion chromatography SEC, followed by online fraction transfer of the monomer peak to the second dimension (2D) by a heart-cutting for charge variant analysis by cation exchange chromatography (CEX). Aiming to maximise the information obtained from minimal sample and time required for analysis, a salt-based separation with UV detection was developed for supporting the processing of a large number of samples to facilitate high-throughput process development (HTPD). In addition, a mass spectrometry (MS) compatible SEC-CEX separation was developed enabling online charge variant peak identification. This study presented the ability to multiplex mAb size and charge variants analysis by coupling SEC with CEX in a 2D-LC set-up. To date, this is the first 2D SEC-CEX-UV(-MS) application for intact mAb analysis.


Subject(s)
Antibodies, Monoclonal , Antibodies, Monoclonal/chemistry , Cations/chemistry , Chromatography, Gel , Glycosylation , Mass Spectrometry/methods
3.
MAbs ; 14(1): 2052228, 2022.
Article in English | MEDLINE | ID: mdl-35323099

ABSTRACT

Transgenic human monoclonal antibodies derived from humanized mice against different epitopes of the Middle East respiratory syndrome coronavirus (MERS-CoV), and chimeric llama-human bispecific heavy chain-only antibodies targeting the Rift Valley fever virus (RVFV), were produced using a CHO-based transient expression system. Two lead candidates were assessed for each model virus before selecting and progressing one lead molecule. MERS-7.7G6 was used as the model antibody to demonstrate batch-to-batch process consistency and, together with RVFV-107-104, were scaled up to 200 L. Consistent expression titers were obtained in different batches at a 5 L scale for MERS-7.7G6. Although lower expression levels were observed for MERS-7.7G6 and RVFV-107-104 during scale up to 200 L, product quality attributes were consistent at different scales and in different batches. In addition to this, peptide mapping data suggested no detectable sequence variants for any of these candidates. Functional assays demonstrated comparable neutralizing activity for MERS-7.7G6 and RVFV-107-104 generated at different production scales. Similarly, MERS-7.7G6 batches generated at different scales were shown to provide comparable protection in mouse models. Our study demonstrates that a CHO-based transient expression process is capable of generating consistent product quality at different production scales and thereby supports the potential of using transient gene expression to accelerate the manufacturing of early clinical material.


Subject(s)
Antibodies, Neutralizing , Middle East Respiratory Syndrome Coronavirus , Animals , Antibodies, Monoclonal/genetics , Antibodies, Viral , Epitopes , Mice , Middle East Respiratory Syndrome Coronavirus/genetics
4.
Biologicals ; 74: 10-15, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34736782

ABSTRACT

The Zoonoses Anticipation and Preparedness Initiative (ZAPI) was set up to prepare for future outbreaks and to develop and implement new technologies to accelerate development and manufacturing of vaccines and monoclonal antibodies. To be able to achieve surge capacity, an easy deployment and production at multiple sites is needed. This requires a straightforward manufacturing system with a limited number of steps in upstream and downstream processes, a minimum number of in vitro Quality Control assays, and robust and consistent platforms. Three viruses were selected as prototypes: Middle East Respiratory Syndrome (MERS) coronavirus, Rift Valley fever virus, and Schmallenberg virus. Selected antibodies against the viral surface antigens were manufactured by transient gene expression in Chinese Hamster Ovary (CHO) cells, scaling up to 200 L. For vaccine production, viral antigens were fused to multimeric protein scaffold particles using the SpyCatcher/SpyTag system. In vivo models demonstrated the efficacy of both antibodies and vaccines. The final step in speeding up vaccine (and antibody) development is the regulatory appraisal of new platform technologies. Towards this end, within ZAPI, a Platform Master File (PfMF) was developed, as part of a licensing dossier, to facilitate and accelerate the scientific assessment by avoiding repeated discussion of already accepted platforms. The veterinary PfMF was accepted, whereas the human PfMF is currently under review by the European Medicines Agency, aiming for publication of the guideline by January 2022.


Subject(s)
Coronavirus Infections , Viral Vaccines , Zoonoses , Animals , Antibodies, Viral , Antigens, Viral , CHO Cells , Congresses as Topic , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Cricetinae , Cricetulus , Humans , Middle East Respiratory Syndrome Coronavirus , Rift Valley fever virus , Zoonoses/prevention & control
5.
Food Chem ; 245: 289-296, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29287373

ABSTRACT

The need for an analytical procedure for the identification of allergens present at trace levels in foods was highlighted by conflicting results in a case of contamination of the spice cumin. The application of a bottom-up proteomics experiment was investigated to identify marker peptides for potential contaminant nuts which could then be monitored with high specificity and sensitivity by selective reaction monitoring experiments. The method developed allowed for the distinction between two closely related Prunus species, almond and mahaleb, in two different spices, cumin and paprika. The paprika sample was found to be contaminated with almond and the cumin sample, contaminated at a much lower level, was found to be contaminated with mahaleb. The method could be applied to any protein-dense food matrix allergen so long as suitable control and reference samples can be acquired.


Subject(s)
Chromatography, Liquid/methods , Food Contamination/analysis , Limit of Detection , Mass Spectrometry/methods , Prunus/chemistry , Spices/analysis , Allergens/analysis , Food Hypersensitivity , Prunus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...