Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 107(1): 342-358, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37690727

ABSTRACT

A 305-d lactation followed by a 60-d dry period has traditionally been considered economically optimal, yet dairy cows in modern intensive dairy systems are frequently dried off while still producing significant quantities of milk. Managing cows for an extended lactation has reported production, welfare, and economic benefits, but not all cows are suitable for an extended lactation. Implementation of an extended lactation strategy on-farm could benefit from use of a decision support system, based on a mathematical lactation model, that can identify suitable cows during early lactation that have a high likelihood of producing above a target milk yield (MY) at 305 d in milk (DIM). Therefore, our objectives were (1) to compare the suitability of 3 commonly used lactation models for modeling extended lactations (Dijkstra, Wood, and Wilmink) in primiparous and multiparous cows under a variety of lactation lengths, and (2) to determine the amount of early-lactation daily MY data needed to accurately forecast MY at d 305 by using the most suitable model and determine whether this is sufficient for identifying cows suitable for an extended lactation before the end of a typical voluntary waiting period (50-90 d). Daily MY data from 467 individual Holstein-Friesian lactations (DIM >305 d; 379 ± 65-d lactation length [mean ± SD]) were fitted by the 3 lactation models using a nonlinear regression procedure. The parameter estimates of these models, lactation characteristics (peak yield, time to peak yield, and persistency), and goodness-of-fit were compared between parity and different lactation lengths. The models had similar performance, and differences between parity groups were consistent with previous literature. Then, data from only the first i DIM for each individual lactation, where i was incremented by 30 d from 30 to 150 DIM and by 50 d from 150 to 300 DIM, were fitted by each model to forecast MY at d 305. The Dijkstra model was selected for further analysis, as it had superior goodness-of-fit statistics for i= 30 and 60. The data set was fit twice by the Dijkstra model, with parameter bounds either unconstrained or constrained. The quality of predictions of MY at d 305 improved with increasing data availability for both models and assisting the model fitting procedure with more biologically relevant constraints on parameters improved the predictions, but neither was reliable enough for practical use on-farm due to the high uncertainty of forecasted predictions. Using 90 d of data, the constrained model correctly classified 66% of lactations as being above or below a target MY at d 305 of 25 kg/d, with a probability threshold of 0.95. The proportion of correct classifications became smaller at lower targets of MY at d 305 and became greater when using more lactation days. Overall, further work is required to develop a model that can forecast late-lactation MY with sufficient accuracy for practical use. We envisage that a hybridized machine learning and mechanistic model that incorporates additional historical and genetic information with early-lactation MY could produce meaningful lactation curve forecasts.


Subject(s)
Lactation , Milk , Pregnancy , Female , Cattle , Animals , Milk/metabolism , Parity , Colostrum , Probability
2.
Sci Rep ; 13(1): 6942, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117259

ABSTRACT

The objective of this study was to determine the influence of a total-mixed ration including unsalable carrots at 45% DM on the rumen microbiome; and the plasma, rumen and liver metabolomes. Carrots discarded at processing were investigated as an energy-dense substitute for barley grain in a conventional feedlot diet, and improved feed conversion efficiency by 25%. Here, rumen fluid was collected from 34 Merino lambs at slaughter (n = 16 control; n = 18 carrot) after a feeding period of 11-weeks. The V4 region of the 16S rRNA gene was sequenced to profile archaeal and bacterial microbe communities. Further, a comprehensive, targeted profile of known metabolites was constructed for blood plasma, rumen fluid and biopsied liver metabolites using a gas chromatography mass spectrometry (GC-MS) metabolomics approach. An in vitro batch culture was used to characterise ruminal fermentation including gas and methane (CH4) production. In vivo rumen microbial community structure of carrot fed lambs was dissimilar (P < 0.01; PERMANOVA), and all measures of alpha diversity were greater (P < 0.01), compared to those fed the control diet. Unclassified genera in Bacteroidales (15.9 ± 6.74% relative abundance; RA) were more abundant (P < 0.01) in the rumen fluid of carrot-fed lambs, while unclassified taxa in the Succinivibrionaceae family (11.1 ± 3.85% RA) were greater (P < 0.01) in the control. The carrot diet improved in vitro ruminal fermentation evidenced as an 8% increase (P < 0.01) in DM digestibility and a 13.8% reduction (P = 0.01) in CH4 on a mg/ g DM basis, while the control diet increased (P = 0.04) percentage of propionate within total VFA by 20%. Fourteen rumen fluid metabolites and 27 liver metabolites were influenced (P ≤ 0.05) by diet, while no effect (P ≥ 0.05) was observed in plasma metabolites. The carrot diet enriched (impact value = 0.13; P = 0.01) the tyrosine metabolism pathway (acetoacetic acid, dopamine and pyruvate), while the control diet enriched (impact value = 0.42; P ≤ 0.02) starch and sucrose metabolism (trehalose and glucose) in rumen fluid. This study demonstrated that feeding 45% DM unsalable carrots diversified bacterial communities in the rumen. These dietary changes influenced pathways of tyrosine degradation, such that previous improvements in feed conversion efficiency in lambs could be explained.


Subject(s)
Daucus carota , Animals , Daucus carota/metabolism , Rumen/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Animal Feed/analysis , Diet/veterinary , Bacteria , Fermentation , Amino Acids/metabolism , Tyrosine/metabolism , Digestion
3.
BMC Plant Biol ; 21(1): 108, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33618672

ABSTRACT

BACKGROUND: Mango, Mangifera indica L., an important tropical fruit crop, is grown for its sweet and aromatic fruits. Past improvement of this species has predominantly relied on chance seedlings derived from over 1000 cultivars in the Indian sub-continent with a large variation for fruit size, yield, biotic and abiotic stress resistance, and fruit quality among other traits. Historically, mango has been an orphan crop with very limited molecular information. Only recently have molecular and genomics-based analyses enabled the creation of linkage maps, transcriptomes, and diversity analysis of large collections. Additionally, the combined analysis of genomic and phenotypic information is poised to improve mango breeding efficiency. RESULTS: This study sequenced, de novo assembled, analyzed, and annotated the genome of the monoembryonic mango cultivar 'Tommy Atkins'. The draft genome sequence was generated using NRGene de-novo Magic on high molecular weight DNA of 'Tommy Atkins', supplemented by 10X Genomics long read sequencing to improve the initial assembly. A hybrid population between 'Tommy Atkins' x 'Kensington Pride' was used to generate phased haplotype chromosomes and a highly resolved phased SNP map. The final 'Tommy Atkins' genome assembly was a consensus sequence that included 20 pseudomolecules representing the 20 chromosomes of mango and included ~ 86% of the ~ 439 Mb haploid mango genome. Skim sequencing identified ~ 3.3 M SNPs using the 'Tommy Atkins' x 'Kensington Pride' mapping population. Repeat masking identified 26,616 genes with a median length of 3348 bp. A whole genome duplication analysis revealed an ancestral 65 MYA polyploidization event shared with Anacardium occidentale. Two regions, one on LG4 and one on LG7 containing 28 candidate genes, were associated with the commercially important fruit size characteristic in the mapping population. CONCLUSIONS: The availability of the complete 'Tommy Atkins' mango genome will aid global initiatives to study mango genetics.


Subject(s)
Crops, Agricultural/growth & development , Crops, Agricultural/genetics , Fruit/growth & development , Fruit/genetics , Mangifera/growth & development , Mangifera/genetics , Taste/genetics , Genetic Variation , Genome, Plant , Genotype , Plant Breeding/methods
4.
Ecology ; 101(3): e02967, 2020 03.
Article in English | MEDLINE | ID: mdl-31925790

ABSTRACT

Animal migrations are a fascinating and global phenomenon, yet they are often difficult to study and sometimes poorly understood. Here, we build on classic ecological theory by hypothesizing that some enigmatic spawning migrations across coastal marine habitats can be inferred from the population genetic signature of larval dispersal by ocean currents. We test this assumption by integrating spatially realistic simulations of alternative spawning migration routes, associated patterns of larval dispersal, and associated variation in the population genetic structure of eastern Australian sea mullet (Mugil cephalus). We then use simulation results to assess the implications of alternative spawning destinations for larval replenishment, and we contrast simulated against measured population genetic variation. Both analyses suggest that the spawning migrations of M. cephalus in eastern Australia are likely to be localized (approximately 100 km along the shore), and that spawning is likely to occur in inshore waters. Our conclusions are supported by multiple lines of evidence available through independent studies, but they challenge the more traditional assumption of a single, long-distance migration event with subsequent offshore spawning in the East Australian Current. More generally, our study operationalizes classic theory on the relationship between fish migrations, ocean currents, and reproductive success. However, rather than confirming the traditionally assumed adaptation of migratory behavior to dominant ocean current flow, our findings support the concept of a genetically measurable link between fish migrations and local oceanographic conditions, specifically water temperature and coastal retention of larvae. We believe that future studies using similar approaches for high resolution and spatially realistic ecological-genetic scenario testing can help rapidly advance our understanding of key ecological processes in many other marine species.


Subject(s)
Animal Migration , Fishes , Animals , Australia , Fishes/genetics , Genetic Variation , Genetics, Population , Larva/genetics , Oceans and Seas
5.
BMC Genomics ; 16: 561, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26220670

ABSTRACT

BACKGROUND: Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. RESULTS: A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316 bp. Variety IW had the highest SNP frequency (one SNP every 258 bp) while KP and NDM had similar frequencies (one SNP every 369 bp and 360 bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. CONCLUSIONS: The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango.


Subject(s)
Flavonoids/biosynthesis , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Mangifera/genetics , Acyltransferases/classification , Acyltransferases/genetics , Anacardiaceae/genetics , Anacardiaceae/metabolism , Cytochrome P-450 Enzyme System/classification , Cytochrome P-450 Enzyme System/genetics , Expressed Sequence Tags , Fruit/genetics , Fruit/metabolism , Mangifera/metabolism , Phenylalanine Ammonia-Lyase/classification , Phenylalanine Ammonia-Lyase/genetics , Phylogeny , Polymorphism, Single Nucleotide , Real-Time Polymerase Chain Reaction , Trans-Cinnamate 4-Monooxygenase/classification , Trans-Cinnamate 4-Monooxygenase/genetics , Transcriptome
6.
Virus Res ; 205: 7-11, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-25975739

ABSTRACT

A limited number of plant rhabdovirus genomes have been fully sequenced, making taxonomic classification, evolutionary analysis and molecular characterization of this virus group difficult. We have for the first time determined the complete genome sequence of 13,188 nucleotides of Datura yellow vein nucleorhabdovirus (DYVV). DYVV genome organization resembles that of its closest relative, Sonchus yellow net virus (SYNV), with six ORFs in antigenomic orientation, separated by highly conserved intergenic regions and flanked by complementary 3' leader and 5' trailer sequences. As is typical for nucleorhabdoviruses, all viral proteins, except the glycoprotein, which is targeted to the endoplasmic reticulum, are localized to the nucleus. Nucleocapsid (N) protein, matrix (M) protein and polymerase, as components of nuclear viroplasms during replication, have predicted strong canonical nuclear localization signals, and N and M proteins exclusively localize to the nucleus when transiently expressed as GFP fusions. As in all nucleorhabdoviruses studied so far, N and phosphoprotein P interact when co-expressed, significantly increasing P nuclear localization in the presence of N protein. This research adds to the list of complete genomes of plant-infecting rhabdoviruses, provides molecular tools for further characterization and supports classification of DYVV as a nucleorhabdovirus closely related to but with some distinct differences from SYNV.


Subject(s)
Cell Nucleus/virology , Genome, Viral , Rhabdoviridae/genetics , Viral Proteins/metabolism , Base Sequence , Datura/virology , Molecular Sequence Data , Plant Diseases/virology , Protein Transport , Rhabdoviridae/classification , Rhabdoviridae/isolation & purification , Rhabdoviridae/metabolism , Viral Proteins/genetics
7.
J Agric Food Chem ; 62(40): 9819-31, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25177767

ABSTRACT

Grain protein composition determines quality traits, such as value for food, feedstock, and biomaterials uses. The major storage proteins in sorghum are the prolamins, known as kafirins. Located primarily on the periphery of the protein bodies surrounding starch, cysteine-rich ß- and γ-kafirins may limit enzymatic access to internally positioned α-kafirins and starch. An integrated approach was used to characterize sorghum with allelic variation at the kafirin loci to determine the effects of this genetic diversity on protein expression. Reversed-phase high performance liquid chromatography and lab-on-a-chip analysis showed reductions in alcohol-soluble protein in ß-kafirin null lines. Gel-based separation and liquid chromatography-tandem mass spectrometry identified a range of redox active proteins affecting storage protein biochemistry. Thioredoxin, involved in the processing of proteins at germination, has reported impacts on grain digestibility and was differentially expressed across genotypes. Thus, redox states of endosperm proteins, of which kafirins are a subset, could affect quality traits in addition to the expression of proteins.


Subject(s)
Endosperm/chemistry , Plant Proteins/analysis , Sorghum/chemistry , Chromatography, High Pressure Liquid/methods , Electrophoresis, Polyacrylamide Gel , Genotype , Glutaredoxins/metabolism , Lab-On-A-Chip Devices , Mutation , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Prolamins/metabolism , Proteomics , Seed Storage Proteins/metabolism , Sorghum/genetics , Tandem Mass Spectrometry , Thioredoxins/metabolism
8.
Proc Biol Sci ; 281(1788): 20140564, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24943366

ABSTRACT

Asexual reproduction avoids the costs associated with sex, predicting that invading asexual clones can quickly replace sexual populations. Daphnia pulex populations in the Great Lakes area are predominately asexual, but the elimination of sexual populations by invading clones is poorly understood. Asexual clones were detected at low frequency in one rare sexual population in 1995, with some increase in frequency during 2003 and 2004. However, these clones remained at low frequency during further yearly sampling (2005-2013) with no evidence that the resident sexual population was in danger of elimination. There was evidence for hybridization between rare males produced by asexual clones and sexual females with the potential to produce new asexual genotypes and spread the genetic factors for asexuality. In a short-term laboratory competition experiment, the two most common asexual clones did not increase in frequency relative to a genetically diverse sexual population due in part to a greater investment in diapausing eggs that trades-off current population growth for increased contribution to the egg bank. Our results suggest that a successful invasion can be prolonged, requiring a combination of clonal genotypes with high fitness, persistence of clones in the egg bank and negative factors affecting the sexual population such as inbreeding depression resulting from population bottlenecks.


Subject(s)
Daphnia/physiology , Genotype , Reproduction, Asexual , Animals , Daphnia/genetics , Female , Hybridization, Genetic , Inbreeding , Male , Ontario , Population Dynamics , Seasons
9.
Nat Commun ; 4: 2320, 2013.
Article in English | MEDLINE | ID: mdl-23982223

ABSTRACT

Sorghum is a food and feed cereal crop adapted to heat and drought and a staple for 500 million of the world's poorest people. Its small diploid genome and phenotypic diversity make it an ideal C4 grass model as a complement to C3 rice. Here we present high coverage (16-45 × ) resequenced genomes of 44 sorghum lines representing the primary gene pool and spanning dimensions of geographic origin, end-use and taxonomic group. We also report the first resequenced genome of S. propinquum, identifying 8 M high-quality SNPs, 1.9 M indels and specific gene loss and gain events in S. bicolor. We observe strong racial structure and a complex domestication history involving at least two distinct domestication events. These assembled genomes enable the leveraging of existing cereal functional genomics data against the novel diversity available in sorghum, providing an unmatched resource for the genetic improvement of sorghum and other grass species.


Subject(s)
Crops, Agricultural/genetics , Edible Grain/genetics , Genome, Plant/genetics , Sequence Analysis, DNA , Sorghum/genetics , Africa , Genotype , Linkage Disequilibrium/genetics , Mutation/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics , Selection, Genetic
10.
Mol Ecol ; 22(17): 4549-61, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23879327

ABSTRACT

The molecular mechanisms leading to asexuality remain little understood despite their substantial bearing on why sexual reproduction is dominant in nature. Here, we examine the role of hybridization in the origin and spread of obligate asexuality in Daphnia pulex, arguably the best-documented case of contagious asexuality. Obligately parthenogenetic (OP) clones of D. pulex have traditionally been separated into 'hybrid' (Ldh SF) and 'nonhybrid' (Ldh SS) forms because the lactase dehydrogenase (Ldh) locus distinguishes the cyclically parthenogenetic (CP) lake dwelling Daphnia pulicaria (Ldh FF) from its ephemeral pond dwelling sister species D. pulex (Ldh SS). The results of our population genetic analyses based on microsatellite loci suggest that both Ldh SS and SF OP individuals can originate from the crossing of CP female F1 (D. pulex × D. pulicaria) and backcross with males from OP lineages carrying genes that suppress meiosis specifically in female offspring. In previous studies, a suite of diagnostic markers was found to be associated with OP in Ldh SS D. pulex lineages. Our association mapping supports a similar genetic mechanism for the spread of obligate parthenogenesis in Ldh SF OP individuals. Interestingly, our study shows that CP D. pulicaria carry many of the diagnostic microsatellite alleles associated with obligate parthenogenesis. We argue that the assemblage of mutations that suppress meiosis and underlie obligate parthenogenesis in D. pulex originated due to a unique historical hybridization and introgression event between D. pulex and D. pulicaria.


Subject(s)
Daphnia/genetics , Genetics, Population , Hybridization, Genetic , Meiosis/genetics , Parthenogenesis , Alleles , Animals , Bayes Theorem , Chromosome Mapping , Daphnia/physiology , Female , Genetic Linkage , Genetic Markers , Inbreeding , Male , Michigan , Microsatellite Repeats , Models, Genetic , Mutation , Ontario , Ponds
11.
Biol Bull ; 218(3): 266-81, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20570850

ABSTRACT

Reproductive isolation in free-spawning organisms may involve only small changes in the gamete surface molecules that control fertilization, linking gamete incompatibility and speciation. Most studies have focused on species in which natural hybrids are absent and reproductive isolation is complete, but how gamete incompatibility evolves remains unclear. Reproductive isolation is incomplete between two sympatric mussel species (Mytilus edulis, M. trossulus) that hybridize in nature. In this study prezygotic and postzygotic components of reproductive incompatibility were examined in laboratory crosses. Conspecific crosses showed significantly greater rates of fertilization than heterospecific crosses, although some females of both species showed heterospecific gamete compatibility. The proportion of fertilized eggs developing into normal larvae was not significantly different between conspecific and heterospecific crosses, but survival of normal larvae was greater for conspecific crosses. Mixed-species sperm experiments suggested that conspecific sperm preference may further limit hybridization. The different components of reproductive incompatibility and total incompatibility varied among females of both species. Although our study has shown that partial reproductive isolation between M. edulis and M. trossulus involves both prezygotic gamete interactions and postzygotic larval survival, further research is required to determine the potential role of gamete incompatibility in the evolution of complete reproductive isolation between these species.


Subject(s)
Hybridization, Genetic , Mytilus edulis/physiology , Animals , Atlantic Ocean , Female , Larva/physiology , Male , Mytilus edulis/genetics , Reproduction , Sperm-Ovum Interactions , Survival Analysis
12.
Ann N Y Acad Sci ; 1139: 10-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18991843

ABSTRACT

Ethanol is a modulator at the N-methyl-d-aspartate class of glutamate receptors in the brain. In animal studies the receptor adapts to sustained ethanol exposure through altered expression of the subunits that make up the receptor complex. We used real-time RT-PCR normalized to GAPDH to assay NR1, NR2A, and NR2B subunit mRNA in superior frontal and primary motor cortex tissue obtained at autopsy from chronic alcoholics with and without co-morbid cirrhosis of the liver, and from matched controls. The expression of all three subunits was significantly lower in both areas of cirrhotic alcoholics than in the corresponding areas in both controls and alcoholics without co-morbid disease, who did not differ significantly from each other. The decrease was area-dependent when cases were partitioned by the 5-HTTLPR allele. Thus, polymorphisms in one gene can have a significant effect on the expression of a second, unrelated, gene. The expression of the N-methyl-d-aspartate glutamate receptor complex is under multifactorial control.


Subject(s)
Alcoholism/metabolism , Genotype , Liver Cirrhosis/metabolism , RNA, Messenger/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Alcoholism/pathology , Animals , Cerebral Cortex/anatomy & histology , Cerebral Cortex/metabolism , Ethanol/metabolism , Gene Frequency , Humans , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Polymorphism, Genetic , Protein Subunits/genetics , Protein Subunits/metabolism , RNA, Messenger/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Regression Analysis , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism
13.
BMC Evol Biol ; 8: 268, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18828920

ABSTRACT

BACKGROUND: The L-lactate and D-lactate dehydrogenases, which are involved in the reduction of pyruvate to L(-)-lactate and D(+)-lactate, belong to evolutionarily unrelated enzyme families. The genes encoding L-LDH have been used as a model for gene duplication due to the multiple paralogs found in eubacteria, archaebacteria, and eukaryotes. Phylogenetic studies have suggested that several gene duplication events led to the main isozymes of this gene family in chordates, but little is known about the evolution of L-Ldh in invertebrates. While most invertebrates preferentially oxidize L-lactic acid, several species of mollusks, a few arthropods and polychaetes were found to have exclusively D-LDH enzymatic activity. Therefore, it has been suggested that L-LDH and D-LDH are mutually exclusive. However, recent characterization of putative mammalian D-LDH with significant similarity to yeast proteins showing D-LDH activity suggests that at least mammals have the two naturally occurring forms of LDH specific to L- and D-lactate. This study describes the phylogenetic relationships of invertebrate L-LDH and D-LDH with special emphasis on crustaceans, and discusses gene duplication events during the evolution of L-Ldh. RESULTS: Our phylogenetic analyses of L-LDH in vertebrates are consistent with the general view that the main isozymes (LDH-A, LDH-B and LDH-C) evolved through a series of gene duplications after the vertebrates diverged from tunicates. We report several gene duplication events in the crustacean, Daphnia pulex, and the leech, Helobdella robusta. Several amino acid sequences with strong similarity to putative mammalian D-LDH and to yeast DLD1 with D-LDH activity were found in both vertebrates and invertebrates. CONCLUSION: The presence of both L-Ldh and D-Ldh genes in several chordates and invertebrates suggests that the two enzymatic forms are not necessarily mutually exclusive. Although, the evolution of L-Ldh has been punctuated by multiple events of gene duplication in both vertebrates and invertebrates, a shared evolutionary history of this gene in the two groups is apparent. Moreover, the high degree of sequence similarity among D-LDH amino acid sequences suggests that they share a common evolutionary history.


Subject(s)
Evolution, Molecular , Invertebrates/enzymology , Lactate Dehydrogenases/genetics , Animals , Crustacea/chemistry , Crustacea/enzymology , Crustacea/genetics , Gene Duplication , Invertebrates/classification , Invertebrates/genetics , Lactate Dehydrogenases/chemistry , Lactate Dehydrogenases/metabolism , Molecular Sequence Data , Phylogeny , Sequence Alignment
14.
J Neurosci Methods ; 160(2): 294-301, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17097739

ABSTRACT

Fluorescence-based PCR techniques are becoming an increasingly popular method for measuring low-abundance alternatively spliced mRNA transcripts. The dynamic range of real-time RT-PCR affords high sensitivity for the measurement of gene expression, but this mandates the need for strict controls to ensure assay validity. Primer design, reverse transcription, and cycling conditions need to be optimized to ensure an accurate and reproducible assay. Here, we describe a procedure for creating a cost effective and reliable method for the absolute quantification of several exon-skipping variants of human excitatory amino acid transporter-2 (EAAT2). We show that the cycling conditions can be adjusted to increase the specificity of primers that span exon-exon junctions, and that differences in the reverse transcription reaction can be minimized. Standard curves are stable and produce accurate absolute copy number data. We report that exon-skipping transcripts, EAAT2Delta7 and EAAT2Delta9, account for 5.8% of EAAT2 mRNA in autopsy human neocortex.


Subject(s)
Alternative Splicing/genetics , Brain Chemistry/genetics , Neurochemistry/methods , Organic Chemicals , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , Benzothiazoles , Diamines , Excitatory Amino Acid Transporter 2/biosynthesis , Excitatory Amino Acid Transporter 2/genetics , Exons/genetics , Fluorescent Dyes , Gene Dosage/genetics , Gene Expression/genetics , Humans , Neurochemistry/economics , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Quinolines , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction/economics
15.
Ann N Y Acad Sci ; 1074: 104-15, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17105908

ABSTRACT

Chronic alcohol misuse by human subjects leads to neuronal loss in regions such as the superior frontal cortex (SFC). Propensity to alcoholism is associated with several genes. gamma-Aminobutyric acid (GABA)(A) receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the regional presentation of GABA(A) and glutamate-NMDA (N-methyl-d-aspartate) receptors in SFC. Autopsy tissue was obtained from alcoholics without comorbid disease, alcoholics with liver cirrhosis, and matched controls. ADH1C, DRD2B, EAAT2, and APOE genotypes modulated GABA(A)-beta subunit protein expression in SFC toward a less-effective form of the receptor. Most genotypes did not divide alcoholics and controls on glutamate-NMDA receptor pharmacology, although gender and cirrhosis did. Genotype may affect amino acid transmission locally to influence neuronal vulnerability.


Subject(s)
Alcoholism/genetics , Brain/metabolism , Liver Cirrhosis, Alcoholic/genetics , Receptors, GABA-A/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Alcoholism/metabolism , Brain/drug effects , Case-Control Studies , Cerebral Cortex/metabolism , Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Gene Expression , Humans , Liver Cirrhosis, Alcoholic/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, GABA-A/metabolism
16.
Neurochem Int ; 49(6): 557-67, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16766085

ABSTRACT

Chronic alcohol misuse by human subjects leads to neuronal loss in regions such as the superior frontal cortex. Reduced GABA transmission may mediate this. The expression of GABA(A) receptor beta(1), beta(2), and beta(3) isoform proteins was analyzed by western blotting in vulnerable (superior frontal cortex) and spared (primary motor cortex) cortical tissue obtained at autopsy from Caucasian subjects, and the effect of genotypes of candidate genes for alcoholism assessed. There was a significant regional difference in global isoform expression, but no significant overall group difference in beta(2) or beta(3)expression between controls and alcoholics undifferentiated by genotype in either cortical region. There were significant, regionally selective, interactions of DRD2B, SLC1A2 and APOE genotypes with beta protein expression when alcoholics were compared with controls. In each instance possession of the alcoholism-associated allele increased the beta(2):beta(3) ratio in the pathologically vulnerable region, by two distinct mechanisms. The SFC beta(2):beta(3) ratio in DRD2B-B2,B2 alcoholics was 22% higher than that in DRD2B-B1,B1 alcoholics, and 17% higher than that in DRD2B-B2,B2 controls. The SFC beta(2):beta(3) ratio in SLC1A2A603 homozygote alcoholics was 25% higher than that in alcoholics with at least one 603G allele, and 75% higher than that in SLC1A2A603 homozygote controls. The SFC beta(2):beta(3) ratio in alcoholics lacking an APOE epsilon3 allele was 73% higher than that in alcoholics with at least one epsilon3 allele, and 70% higher than that in controls without an epsilon3 allele. ADH1C genotype also differentiated cases and controls, but the effect was not localized. GABRB2 and GRIN2B genotypes were associated with significant regional differences in the pattern of beta subunit expression, but this was not influenced by alcoholism status. DRD2A and SLC6A4 genotypes were without significant effect. A restricted set of genotypes may influence subunit expression in this group of high-consumption alcoholics.


Subject(s)
Alcoholism/genetics , Brain Chemistry/genetics , Receptors, GABA-A/biosynthesis , Receptors, GABA-A/genetics , Aging/physiology , Blotting, Western , Data Interpretation, Statistical , Electrophoresis, Polyacrylamide Gel , Female , Genotype , Humans , Immunoblotting , Male , Nerve Tissue Proteins/biosynthesis , Phenotype , Postmortem Changes , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
17.
Ann N Y Acad Sci ; 1025: 14-26, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15542695

ABSTRACT

Alcoholism results in changes in the human brain that reinforce the cycle of craving and dependency, and these changes are manifest in the pattern of expression of proteins in key cells and brain areas. Described here is a proteomics-based approach aimed at determining the identity of proteins in the superior frontal cortex (SFC) of the human brain that show different levels of expression in autopsy samples taken from healthy and long-term alcohol abuse subjects. Soluble protein fractions constituting pooled samples combined from SFC biopsies of four well-characterized chronic alcoholics (mean consumption > 80 g ethanol/day throughout adulthood) and four matched controls (<20 g/day) were generated. Two-dimensional electrophoresis was performed in triplicate on alcoholic and control samples and the resultant protein profiles analyzed for differential expression. Overall, 182 proteins differed by the criterion of twofold or more between case and control samples. Of these, 139 showed significantly lower expression in alcoholics, 35 showed significantly higher expression, and 8 were new or had disappeared. To date, 63 proteins have been identified using MALDI-MS and MS-MS. The finding that the expression level of differentially expressed proteins is preponderantly lower in the alcoholic brain is supported by recent results from parallel studies using microarray mRNA transcript.


Subject(s)
Alcoholism/genetics , Alcoholism/metabolism , Brain/metabolism , Proteomics/methods , Aged , Alcoholism/pathology , Brain/pathology , Databases, Genetic , Electrophoresis, Gel, Two-Dimensional/methods , Humans , Male , Middle Aged , Protein Array Analysis/methods
18.
Addict Behav ; 29(7): 1295-309, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15345266

ABSTRACT

Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABAA receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate and gamma-aminobutyric acid (GABA) receptors to influence the severity of alcohol-induced brain damage. Cerebrocortical tissue was obtained at autopsy from alcoholics without alcohol-related disease, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABB2, EAAT2, and 5HTT genotypes did not divide alcoholic cases and controls on N-methyl-d-aspartate (NMDA) receptor parameters. In contrast, alcohol dehydrogenase (ADH)3 genotype interacted significantly with NMDA receptor efficacy and affinity in a region-specific manner. EAAT2 genotype interacted significantly with local GABAA receptor beta subunit mRNA expression, and GABB2 and DRD2B genotypes with beta subunit isoform protein expression. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence.


Subject(s)
Alcoholism/genetics , Brain/metabolism , Neurotransmitter Agents/metabolism , Adult , Aged , Aged, 80 and over , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Alcoholism/metabolism , Amino Acids/metabolism , Analysis of Variance , Case-Control Studies , Female , Gene Expression , Genotype , Humans , Liver Cirrhosis, Alcoholic/genetics , Liver Cirrhosis, Alcoholic/metabolism , Male , Middle Aged , Protein Binding , Protein Isoforms/genetics , RNA, Messenger/analysis , Receptors, GABA-A/genetics , Receptors, Glutamate/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Reverse Transcriptase Polymerase Chain Reaction
19.
Oecologia ; 111(1): 53-60, 1997 Jun.
Article in English | MEDLINE | ID: mdl-28307505

ABSTRACT

Species of Daphnia (Crustacea: Cladocera) typically reproduce by cyclical parthenogenesis, in which a period of all-female parthenogenetic reproduction is followed by sexual reproduction. Sex in Daphnia is determined by the environment, with factors such as temperature, photoperiod and crowding stimulating the production of males and sexual females. Previous studies on Daphnia pulex from temporary pond habitats demonstrated the coexistence of male-producing and non-male-producing (NMP) females, as determined under crowding in the laboratory. A strong genetic component to this sex allocation variation suggested that sex expression in D. pulex is better described as a result of genotype-environment interaction. The present study examined the switch from parthenogenetic to sexual reproduction in two temporary-pond populations of D. pulex. Both populations showed a very early investment in sexual reproduction, independent of population density, by producing males very soon after the populations were reestablished from resting eggs in the early spring. Approximately 40% of the initial broods were male. Additional evidence for gender specialization was obtained by observing the sex of two or three successive broods for 85 individual females. Fifty-eight females produced successive broods of females, 13 females produced successive broods of males and 14 females produced successive broods which included both male and female broods. Females that produced successive female broods under natural conditions included a higher frequency of NMP females compared to a random sample of females, confirming the existence of NMP females. Sexual females were observed in both populations after the first appearence of males, suggesting that the presence of males may stimulate the production of sexual females. For D. pulex populations in a temporary environment, there appears to be an increased emphasis on sexual reproduction and a decreased influence of the environment on sex determination, compared to Daphnia populations in more permanent habitats.

20.
Evolution ; 42(5): 1024-1035, 1988 Sep.
Article in English | MEDLINE | ID: mdl-28581165

ABSTRACT

Sex in Daphnia is environmentally determined, and some obligately parthenogenetic clones of D. pulex have retained the ability to produce males. In the present study, males from 13 such clones were crossed to sexual females from closely related cyclical parthenogens both to determine whether the males were capable of producing viable hybrids and to determine the mode of reproduction of the hybrids. A total of 178 genetically confirmed hybrids were produced, with each of the 19 attempted crosses resulting in some viable hybrids. On average, only 34% of the hybrid eggs that initiated development survived to the reproductive stage, suggesting some incompatibility between the parents. The absence of any association between survivorship and parental or hybrid genotype indicated, however, that there is no specific genetic incompatibility associated with the marker loci used. The inability of most hybrids to produce normal resting eggs is further evidence of a general genomic incompatibility between the parents. Ten of the hybrids produced viable resting eggs, permitting tests to determine their mode of reproduction. Six of the 10 hybrids reproduced by cyclical parthenogenesis, like their maternal parent. The remaining four hybrids reproduced by obligate parthenogenesis, like their paternal parent, demonstrating that the genes suppressing meiosis can be transmitted by the male parent. These results support a model for the generation of new clones that involves the spread of genes suppressing meiosis and provide evidence that the high genotypic diversity observed in obligately parthenogenetic populations of D. pulex is a result of the multiple origin of new clones from the cyclical parthenogens. Evidence was also obtained suggesting that the obligately parthenogenetic clones carry a load of recessive deleterious genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...