Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neuroanat ; 17: 1130729, 2023.
Article in English | MEDLINE | ID: mdl-37139179

ABSTRACT

The vision of astroglia as a bare scaffold to neuronal circuitry has been largely overturned. Astrocytes exert a neurotrophic function, but also take active part in supporting synaptic transmission and in calibrating blood circulation. Many aspects of their functioning have been unveiled from studies conducted in murine models, however evidence is showing many differences between mouse and human astrocytes starting from their development and encompassing morphological, transcriptomic and physiological variations when they achieve complete maturation. The evolutionary race toward superior cognitive abilities unique to humans has drastically impacted neocortex structure and, together with neuronal circuitry, astrocytes have also been affected with the acquisition of species-specific properties. In this review, we summarize diversities between murine and human astroglia, with a specific focus on neocortex, in a panoramic view that starts with their developmental origin to include all structural and molecular differences that mark the uniqueness of human astrocytes.

2.
Biotechnol Bioeng ; 119(11): 3210-3220, 2022 11.
Article in English | MEDLINE | ID: mdl-35906818

ABSTRACT

Affinity capture is one of the most attractive strategies for simplifying downstream processing. Although it is a key mainstream approach for antibody purification, the same is not true for other biologics such as vaccines, mainly due to the lack of suitable affinity material. In this study, a novel custom affinity system is introduced permitting widespread adoption of affinity capture for the purification of biologics beyond antibodies. This is illustrated here by the development of a one-step purification process of a mutant form of streptolysin O (SLO), a vaccine candidate against Streptococcus pyogenes infection. The system consists of the association of custom ligands based on the Nanofitin protein scaffold, with Eshmuno® industry-grade chromatography medium. The Nanofitins were selected for their specificity to the target product. The newly developed affinity medium was used at different column sizes to monitor scalability from process development (1 ml) and robustness verification (5 ml) to pilot (133 ml) and technical (469 ml) runs. The single-step affinity purification consistently delivered high purity product (above > 90%) and improved performances compared with the current three-step process: reduced process time and footprint (3 to 1 step) and increased product yields (0.31 g vs. 0.04 g of SLO per kg of harvest broth). The custom affinity system herein described can potentially be applied to any biologic for which a specific Nanofitin is identified, thus establishing a platform with a strong impact on the manufacturing of vaccines and other biological targets.


Subject(s)
Streptococcus pyogenes , Vaccines , Chromatography, Affinity/methods , Ligands , Streptococcus pyogenes/genetics
3.
Front Cell Neurosci ; 16: 858347, 2022.
Article in English | MEDLINE | ID: mdl-35573835

ABSTRACT

As microtubule-organizing centers (MTOCs), centrosomes play a pivotal role in cell division, neurodevelopment and neuronal maturation. Among centrosomal proteins, centrin-2 (CETN2) also contributes to DNA repair mechanisms which are fundamental to prevent genomic instability during neural stem cell pool expansion. Nevertheless, the expression profile of CETN2 in human neural stem cells and their progeny is currently unknown. To address this question, we interrogated a platform of human neuroepithelial stem (NES) cells derived from post mortem developing brain or established from pluripotent cells and demonstrated that while CETN2 retains its centrosomal location in proliferating NES cells, its expression pattern changes upon differentiation. In particular, we found that CETN2 is selectively expressed in mature astrocytes with a broad cytoplasmic distribution. We then extended our findings on human autoptic nervous tissue samples. We investigated CETN2 distribution in diverse anatomical areas along the rostro-caudal neuraxis and pointed out a peculiar topography of CETN2-labeled astrocytes in humans which was not appreciable in murine tissues, where CETN2 was mostly confined to ependymal cells. As a prototypical condition with glial overproliferation, we also explored CETN2 expression in glioblastoma multiforme (GBM), reporting a focal concentration of CETN2 in neoplastic astrocytes. This study expands CETN2 localization beyond centrosomes and reveals a unique expression pattern that makes it eligible as a novel astrocytic molecular marker, thus opening new roads to glial biology and human neural conditions.

4.
Pharmaceutics ; 13(12)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34959416

ABSTRACT

Chromatography is a widely used separation process for purification of biopharmaceuticals that is able to obtain high purities and concentrations. The phenomena that occur during separation, mass transfer and adsorption are quite complex. To better understand these phenomena and their mechanisms, multi-component adsorption isotherms must be investigated. High-throughput methodologies are a very powerful tool to determine adsorption isotherms and they waste very small amounts of sample and chemicals, but the quantification of component concentrations is a real bottleneck in multi-component isotherm determination. The behavior of bovine serum albumin, Corynebacterium diphtheriae CRM197 protein and lysozyme, selected as model proteins in binary mixtures with hydrophobic resin, is investigated here. In this work we propose a new method for determining multi-component adsorption isotherms using high-throughput experiments with filter plates, by exploiting microfluidic capillary electrophoresis. The precision and accuracy of the microfluidic capillary electrophoresis platform were evaluated in order to assess the procedure; they were both found to be high and the procedure is thus reliable in determining adsorption isotherms for binary mixtures. Multi-component adsorption isotherms were determined with a totally high-throughput procedure that turned out to be a very fast and powerful tool. The same procedure can be applied to every kind of high-throughput screening.

SELECTION OF CITATIONS
SEARCH DETAIL
...