Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9441, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658734

ABSTRACT

Peripheral blood is an alternative source of stem/progenitor cells for regenerative medicine owing to its ease of retrieval and blood bank storage. Previous in vitro studies indicated that the conditioned medium derived from peripheral blood mononuclear cells (PBMCs) treated with the iron-quercetin complex (IronQ) contains potent angiogenesis and wound-healing properties. This study aims to unveil the intricate regulatory mechanisms governing the effects of IronQ on the transcriptome profiles of human PBMCs from healthy volunteers and those with diabetes mellitus (DM) using RNA sequencing analysis. Our findings revealed 3741 and 2204 differentially expressed genes (DEGs) when treating healthy and DM PBMCs with IronQ, respectively. Functional enrichment analyses underscored the biological processes shared by the DEGs in both conditions, including inflammatory responses, cell migration, cellular stress responses, and angiogenesis. A comprehensive exploration of these molecular alterations exposed a network of 20 hub genes essential in response to stimuli, cell migration, immune processes, and the mitogen-activated protein kinase (MAPK) pathway. The activation of these pathways enabled PBMCs to potentiate angiogenesis and tissue repair. Corroborating this, quantitative real-time polymerase chain reaction (qRT-PCR) and cell phenotyping confirmed the upregulation of candidate genes associated with anti-inflammatory, pro-angiogenesis, and tissue repair processes in IronQ-treated PBMCs. In summary, combining IronQ and PBMCs brings about substantial shifts in gene expression profiles and activates pathways that are crucial for tissue repair and immune response, which is promising for the enhancement of the therapeutic potential of PBMCs, especially in diabetic wound healing.


Subject(s)
Diabetes Mellitus , Healthy Volunteers , Iron , Leukocytes, Mononuclear , Quercetin , Transcriptome , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Quercetin/pharmacology , Transcriptome/drug effects , Iron/metabolism , Diabetes Mellitus/drug therapy , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Gene Expression Profiling , Male , Female , Adult
2.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37765000

ABSTRACT

Combining phytochemicals with chemotherapeutic drugs has demonstrated the potential to surmount drug resistance. In this paper, we explore the efficacy of pentagalloyl glucose (PGG) in modulating P-gp and reversing multidrug resistance (MDR) in drug-resistant leukemic cells (K562/ADR). The cytotoxicity of PGG was evaluated using a CCK-8 assay, and cell apoptosis was assessed using flow cytometry. Western blotting was used to analyze protein expression levels. P-glycoprotein (P-gp) activity was evaluated by monitoring the kinetics of P-gp-mediated efflux of pirarubicin (THP). Finally, molecular docking, molecular dynamics simulation, and molecular mechanics with generalized Born and surface area solvation (MM-GBSA) calculation were conducted to investigate drug-protein interactions. We found that PGG selectively induced cytotoxicity in K562/ADR cells and enhanced sensitivity to doxorubicin (DOX), indicating its potential as a reversal agent. PGG reduced the expression of P-gp and its gene transcript levels. Additionally, PGG inhibited P-gp-mediated efflux and increased intracellular drug accumulation in drug-resistant cells. Molecular dynamics simulations and MM-GBSA calculation provided insights into the binding affinity of PGG to P-gp, suggesting that PGG binds tightly to both the substrate and the ATP binding sites of P-gp. These findings support the potential of PGG to target P-gp, reverse drug resistance, and enhance the efficacy of anticancer therapies.

3.
Molecules ; 28(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37375411

ABSTRACT

Pentagalloyl glucose (PGG) is a natural hydrolyzable gallotannin abundant in various plants and herbs. It has a broad range of biological activities, specifically anticancer activities, and numerous molecular targets. Despite multiple studies available on the pharmacological action of PGG, the molecular mechanisms underlying the anticancer effects of PGG are unclear. Here, we have critically reviewed the natural sources of PGG, its anticancer properties, and underlying mechanisms of action. We found that multiple natural sources of PGG are available, and the existing production technology is sufficient to produce large quantities of the required product. Three plants (or their parts) with maximum PGG content were Rhus chinensis Mill, Bouea macrophylla seed, and Mangifera indica kernel. PGG acts on multiple molecular targets and signaling pathways associated with the hallmarks of cancer to inhibit growth, angiogenesis, and metastasis of several cancers. Moreover, PGG can enhance the efficacy of chemotherapy and radiotherapy by modulating various cancer-associated pathways. Therefore, PGG can be used for treating different human cancers; nevertheless, the data on the pharmacokinetics and safety profile of PGG are limited, and further studies are essential to define the clinical use of PGG in cancer therapies.


Subject(s)
Glucose , Hydrolyzable Tannins , Humans , Hydrolyzable Tannins/pharmacology , Hydrolyzable Tannins/metabolism
4.
Nanomaterials (Basel) ; 12(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36014641

ABSTRACT

The theranostic agent iron-quercetin complex (IronQ) provides a T1-positive magnetic resonance imaging (MRI) contrast agent. The magnetically IronQ-labeled cells can be used for cell tracking and have active biological applications in promoting cell and tissue regeneration. However, a detailed investigation of IronQ's cytotoxicity and genotoxicity is necessary. Thus, this study aimed to evaluate the possibility of IronQ inducing cytotoxicity and genotoxicity in peripheral blood mononuclear cells (PBMCs). We evaluated the vitality of cells, the production of reactive oxygen species (ROS), the level of antioxidant enzymes, and the stability of the genetic material in PBMCs treated with IronQ. The results show that IronQ had a negligible impact on toxicological parameters such as ROS production and lipid peroxidation, indicating that it is not harmful. IronQ-labeled PMBCs experienced an insignificant depletion of antioxidant enzyme levels at the highest concentration of IronQ. There is no evident genotoxicity in the magnetically IronQ-labeled PBMCs. The results show that IronQ does not potentiate the cytotoxicity and genotoxicity effects of the labeled PMBCs and might be safe for therapeutic and cell tracking purposes. These results could provide a reference guideline for the toxicological analysis of IronQ in in vivo studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...