Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Evol ; 91(5): 669-686, 2023 10.
Article in English | MEDLINE | ID: mdl-37606665

ABSTRACT

The Clp1 family proteins, consisting of the Clp1 and Nol9/Grc3 groups, have polynucleotide kinase (PNK) activity at the 5' end of RNA strands and are important enzymes in the processing of some precursor RNAs. However, it remains unclear how this enzyme family diversified in the eukaryotes. We performed a large-scale molecular evolutionary analysis of the full-length genomes of 358 eukaryotic species to classify the diverse Clp1 family proteins. The average number of Clp1 family proteins in eukaryotes was 2.3 ± 1.0, and most representative species had both Clp1 and Nol9/Grc3 proteins, suggesting that the Clp1 and Nol9/Grc3 groups were already formed in the eukaryotic ancestor by gene duplication. We also detected an average of 4.1 ± 0.4 Clp1 family proteins in members of the protist phylum Euglenozoa. For example, in Trypanosoma brucei, there are three genes of the Clp1 group and one gene of the Nol9/Grc3 group. In the Clp1 group proteins encoded by these three genes, the C-terminal domains have been replaced by unique characteristics domains, so we designated these proteins Tb-Clp1-t1, Tb-Clp1-t2, and Tb-Clp1-t3. Experimental validation showed that only Tb-Clp1-t2 has PNK activity against RNA strands. As in this example, N-terminal and C-terminal domain replacement also contributed to the diversification of the Clp1 family proteins in other eukaryotic species. Our analysis also revealed that the Clp1 family proteins in humans and plants diversified through isoforms created by alternative splicing.


Subject(s)
Eukaryota , Trypanosoma brucei brucei , Humans , Eukaryota/genetics , Polynucleotide 5'-Hydroxyl-Kinase/genetics , Polynucleotide 5'-Hydroxyl-Kinase/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , RNA/metabolism , RNA Processing, Post-Transcriptional
2.
mBio ; 13(6): e0237122, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36226957

ABSTRACT

The regulatory function of many bacterial small RNAs (sRNAs) requires the binding of the RNA chaperone Hfq to the 3' portion of the sRNA intrinsic terminator, and therefore sRNA signaling might be regulated by modulating its terminator. Here, using a multicopy screen developed with the terminator of sRNA SgrS, we identified an sRNA gene (cyaR) and three protein-coding genes (cspD, ygjH, and rof) that attenuate SgrS termination in Escherichia coli. Analyses of CyaR and YgjH, a putative tRNA binding protein, suggested that the CyaR activity was indirect and the effect of YgjH was moderate. Overproduction of the protein attenuators CspD and Rof resulted in more frequent readthrough at terminators of SgrS and two other sRNAs, and regulation by SgrS of target mRNAs was reduced. The effect of Rof, a known inhibitor of Rho, was mimicked by bicyclomycin or by a rho mutant, suggesting an unexpected role for Rho in sRNA termination. CspD, a member of the cold shock protein family, bound both terminated and readthrough transcripts, stabilizing them and attenuating termination. By RNA sequencing analysis of the CspD overexpression strain, we found global effects of CspD on gene expression across some termination sites. We further demonstrated effects of endogenous CspD under slow growth conditions where cspD is highly expressed. These findings provided evidence of changes in the efficiency of intrinsic termination, confirming this as an additional layer of the regulation of sRNA signaling. IMPORTANCE Growing evidence suggests that the modulation of intrinsic termination and readthrough of transcription is more widespread than previously appreciated. For small RNAs, proper termination plays a critical role in their regulatory function. Here, we present a multicopy screen approach to identify factors that attenuate small RNA termination and therefore abrogate signaling dependent on the small RNA. This study highlights a new aspect of regulation of small RNA signaling as well as the modulation of intrinsic termination.


Subject(s)
Escherichia coli Proteins , Escherichia coli , RNA, Small Untranslated , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/genetics , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics , Retroviridae Proteins/genetics , Retroviridae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...