Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(2): 140-148, 2024.
Article in English | MEDLINE | ID: mdl-38346753

ABSTRACT

From the biota beneath the sea ice in Lake Saroma, which is adjacent to Sea of Okhotsk, a diatom culture of Saroma 16 was isolated. Strutted processes and a labiate process in Saroma 16 were characteristic of those in Thalassiosira nordenskioeldii. Similarity search analysis showed that the 826-bp rbcL-3P region sequence of this strain was 100% identical to multiple sequences registered as T. nordenskioeldii in a public database. The 4305-bp PCR-amplified mitochondrial cytochrome c oxidase subunit I (COI) gene (COI)-5P region of Saroma 16 included a 1060-bp open reading frame (ORF), which was interrupted by 934-bp and 2311-bp introns that included frame-shifted ORFs encoding reverse-transcriptase (RTase)-like proteins. Previous reports showed that a strain of the same species, CNS00052, originating from the East China Sea included no introns in the COI, whereas North Atlantic Ocean strains of the same species, such as CCMP992, CCMP993, and CCMP997, included a 2.3-kb intron in the same position as Saroma 16.


Subject(s)
Diatoms , Electron Transport Complex IV , Electron Transport Complex IV/genetics , Base Sequence , Amino Acid Sequence , Diatoms/genetics , Introns/genetics , DNA, Mitochondrial/genetics
2.
Front Microbiol ; 14: 1036372, 2023.
Article in English | MEDLINE | ID: mdl-36960277

ABSTRACT

The ciliate Paramecium bursaria harbors several hundred symbiotic algae in its cell and is widely used as an experimental model for studying symbiosis between eukaryotic cells. Currently, various types of bacteria and eukaryotic microorganisms are used as food for culturing P. bursaria; thus, the cultivation conditions are not uniform among researchers. To unify cultivation conditions, we established cloned, unfed strains that can be cultured using only sterile medium without exogenous food. The proliferation of these unfed strains was suppressed in the presence of antibiotics, suggesting that bacteria are required for the proliferation of the unfed strains. Indeed, several kinds of bacteria, such as Burkholderiales, Rhizobiales, Rhodospirillales, and Sphingomonadales, which are able to fix atmospheric nitrogen and/or degrade chemical pollutants, were detected in the unfed strains. The genetic background of the individually cloned, unfed strains were the same, but the proliferation curves of the individual P. bursaria strains were very diverse. Therefore, we selected multiple actively and poorly proliferating individual strains and compared the bacterial composition among the individual strains using 16S rDNA sequencing. The results showed that the bacterial composition among actively proliferating P. bursaria strains was highly homologous but different to poorly proliferating strains. Using unfed strains, the cultivation conditions applied in different laboratories can be unified, and symbiosis research on P. bursaria will make great progress.

3.
J Biol Chem ; 298(6): 101967, 2022 06.
Article in English | MEDLINE | ID: mdl-35460693

ABSTRACT

The mildly thermophilic purple phototrophic bacterium Allochromatium tepidum provides a unique model for investigating various intermediate phenotypes observed between those of thermophilic and mesophilic counterparts. The core light-harvesting (LH1) complex from A. tepidum exhibits an absorption maximum at 890 nm and mildly enhanced thermostability, both of which are Ca2+-dependent. However, it is unknown what structural determinants might contribute to these properties. Here, we present a cryo-EM structure of the reaction center-associated LH1 complex at 2.81 Å resolution, in which we identify multiple pigment-binding α- and ß-polypeptides within an LH1 ring. Of the 16 α-polypeptides, we show that six (α1) bind Ca2+ along with ß1- or ß3-polypeptides to form the Ca2+-binding sites. This structure differs from that of fully Ca2+-bound LH1 from Thermochromatium tepidum, enabling determination of the minimum structural requirements for Ca2+-binding. We also identified three amino acids (Trp44, Asp47, and Ile49) in the C-terminal region of the A. tepidum α1-polypeptide that ligate each Ca ion, forming a Ca2+-binding WxxDxI motif that is conserved in all Ca2+-bound LH1 α-polypeptides from other species with reported structures. The partial Ca2+-bound structure further explains the unusual phenotypic properties observed for this bacterium in terms of its Ca2+-requirements for thermostability, spectroscopy, and phototrophic growth, and supports the hypothesis that A. tepidum may represent a "transitional" species between mesophilic and thermophilic purple sulfur bacteria. The characteristic arrangement of multiple αß-polypeptides also suggests a mechanism of molecular recognition in the expression and/or assembly of the LH1 complex that could be regulated through interactions with reaction center subunits.


Subject(s)
Chromatiaceae , Light-Harvesting Protein Complexes , Bacterial Proteins/metabolism , Binding Sites , Calcium/metabolism , Light-Harvesting Protein Complexes/chemistry , Peptides/chemistry
4.
Biochemistry ; 60(36): 2685-2690, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34448581

ABSTRACT

Light-harvesting complex 1 (LH1) of the thermophilic purple sulfur bacterium Thermochromatium tepidum can be expressed in the purple non-sulfur bacterium Rhodobacter sphaeroides and forms a functional RC-LH1 complex with the native Rba. sphaeroides reaction center (Nagashima, K. V. P., et al. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 10906-10911). Although there is a large uphill energy gap between Tch. tepidum LH1 and the Rba. sphaeroides RC in this chimeric complex, it has been shown that light energy can be transferred, consistent with that seen in the native Rba. sphaeroides RC-LH1 complex. In this study, the contribution of this chimeric complex to growth and photosynthetic energy conversion in the hybrid organism was quantified. The mutant synthesizing this chimeric complex was grown phototrophically under 940 nm light-emitting diode (LED) light preferentially absorbed by Tch. tepidum LH1 and showed faster growth at low intensities of this wavelength than both a mutant strain of Rba. sphaeroides lacking LH2 and a mutant lacking all light-harvesting complexes. When grown with 850 nm LED light, the strain containing the native Rba. sphaeroides LH1-RC grew faster than the chimeric strain. Electron transfer from the RC to the membrane-integrated cytochrome bc1 complex was also estimated by flash-induced absorption changes in heme b. The rate of ubiquinone transport through the LH1 ring structure in the chimeric strain was virtually the same as that in native Rba. sphaeroides. We conclude that Tch. tepidum LH1 can perform the physiological functions of native LH1 in Rba. sphaeroides.


Subject(s)
Bacterial Proteins/metabolism , Chromatiaceae/metabolism , Light-Harvesting Protein Complexes/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacter sphaeroides/metabolism , Binding Sites , Electron Transport , Energy Metabolism , Genetic Engineering/methods , Photosynthesis
5.
Arch Microbiol ; 203(2): 799-808, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33051772

ABSTRACT

The green sulfur bacterium, Chlorobaculum tepidum, is an anaerobic photoautotroph that performs anoxygenic photosynthesis. Although genes encoding rubredoxin (Rd) and a putative flavodiiron protein (FDP) were reported in the genome, a gene encoding putative NADH-Rd oxidoreductase is not identified. In this work, we expressed and purified the recombinant Rd and FDP and confirmed dioxygen reductase activity in the presence of ferredoxin-NAD(P)+ oxidoreductase (FNR). FNR from C. tepidum and Bacillus subtilis catalyzed the reduction of Rd at rates comparable to those reported for NADH-Rd oxidoreductases. Also, we observed substrate inhibition at high concentrations of NADPH similar to that observed with ferredoxins. In the presence of NADPH, B. subtilis FNR and Rd, FDP promoted dioxygen reduction at rates comparable to those reported for other bacterial FDPs. Taken together, our results suggest that Rd and FDP participate in the reduction of dioxygen in C. tepidum and that FNR can promote the reduction of Rd in this bacterium.


Subject(s)
Chlorobi/chemistry , Chlorobi/enzymology , Ferredoxin-NADP Reductase/metabolism , Rubredoxins/metabolism , Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , NAD/metabolism , NADP/metabolism , Oxidation-Reduction , Sulfur/metabolism
6.
Life (Basel) ; 8(4)2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30347777

ABSTRACT

In the published article "How close we are to achieving commercially viable large-scale photobiological hydrogen production by cyanobacteria:[...].

7.
J Gen Appl Microbiol ; 63(5): 274-279, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-28904251

ABSTRACT

The efficiency of hydrogen gas production by nitrogenase in bacteria has been improved by the inhibition of antagonistic activity by the uptake hydrogenase. In this study, a mutant lacking the gene coding for the uptake hydrogenase was generated from the photosynthetic beta-proteobacterium Rubrivivax gelatinosus IL144 to explore new ways of hydrogen gas production driven by light energy. The mutant cells produced 25-30% higher amounts of molecular hydrogen than the wild-type cells under nitrogen-deficient conditions under light. Furthermore, by the addition of 5 mM glutamate, the photosynthetic growth rate was greatly enhanced, and the hydrogen gas production activity reached 41.1 (mmol/l) in the mutant.


Subject(s)
Bacterial Proteins/metabolism , Burkholderiaceae/enzymology , Burkholderiaceae/genetics , Hydrogen/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Bacterial Proteins/genetics , Burkholderiaceae/growth & development , Glutamic Acid/metabolism , Nitrogen Fixation , Nitrogenase/metabolism , Photosynthesis , Sequence Deletion/genetics
8.
Proc Natl Acad Sci U S A ; 114(41): 10906-10911, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28935692

ABSTRACT

The native core light-harvesting complex (LH1) from the thermophilic purple phototrophic bacterium Thermochromatium tepidum requires Ca2+ for its thermal stability and characteristic absorption maximum at 915 nm. To explore the role of specific amino acid residues of the LH1 polypeptides in Ca-binding behavior, we constructed a genetic system for heterologously expressing the Tch. tepidum LH1 complex in an engineered Rhodobacter sphaeroides mutant strain. This system contained a chimeric pufBALM gene cluster (pufBA from Tch. tepidum and pufLM from Rba. sphaeroides) and was subsequently deployed for introducing site-directed mutations on the LH1 polypeptides. All mutant strains were capable of phototrophic (anoxic/light) growth. The heterologously expressed Tch. tepidum wild-type LH1 complex was isolated in a reaction center (RC)-associated form and displayed the characteristic absorption properties of this thermophilic phototroph. Spheroidene (the major carotenoid in Rba. sphaeroides) was incorporated into the Tch. tepidum LH1 complex in place of its native spirilloxanthins with one carotenoid molecule present per αß-subunit. The hybrid LH1-RC complexes expressed in Rba. sphaeroides were characterized using absorption, fluorescence excitation, and resonance Raman spectroscopy. Site-specific mutagenesis combined with spectroscopic measurements revealed that α-D49, ß-L46, and a deletion at position 43 of the α-polypeptide play critical roles in Ca binding in the Tch. tepidum LH1 complex; in contrast, α-N50 does not participate in Ca2+ coordination. These findings build on recent structural data obtained from a high-resolution crystallographic structure of the membrane integrated Tch. tepidum LH1-RC complex and have unambiguously identified the location of Ca2+ within this key antenna complex.


Subject(s)
Bacterial Proteins/metabolism , Calcium/metabolism , Chromatiaceae/metabolism , Light-Harvesting Protein Complexes/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacter sphaeroides/metabolism , Bacterial Proteins/genetics , Binding Sites , Carotenoids/metabolism , Chromatiaceae/genetics , Chromatiaceae/growth & development , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/genetics , Models, Molecular , Photosynthesis , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/genetics , Protein Binding , Protein Conformation , Rhodobacter sphaeroides/genetics , Rhodobacter sphaeroides/growth & development , Structure-Activity Relationship
9.
Appl Microbiol Biotechnol ; 101(5): 2177-2188, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28064366

ABSTRACT

The effects of increasing the heterocyst-to-vegetative cell ratio on the nitrogenase-based photobiological hydrogen production by the filamentous heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 were studied. Using the uptake hydrogenase-disrupted mutant (ΔHup) as the parent, a deletion-insertion mutant (PN1) was created in patN, known to be involved in heterocyst pattern formation and leading to multiple singular heterocysts (MSH) in Nostoc punctiforme strain ATCC 29133. The PN1 strain showed heterocyst differentiation but failed to grow in medium free of combined-nitrogen; however, a spontaneous mutant (PN22) was obtained on prolonged incubation of PN1 liquid cultures and was able to grow robustly on N2. The disruption of patN was confirmed in both PN1 and PN22 by PCR and whole genome resequencing. Under combined-nitrogen limitation, the percentage of heterocysts to total cells in the PN22 filaments was 13-15 and 16-18% under air and 1% CO2-enriched air, respectively, in contrast to the parent ΔHup which formed 6.5-11 and 9.7-13% heterocysts in these conditions. The PN22 strain exhibited a MSH phenotype, normal diazotrophic growth, and higher H2 productivity at high cell concentrations, and was less susceptible to photoinhibition by strong light than the parent ΔHup strain, resulting in greater light energy utilization efficiency in H2 production on a per unit area basis under high light conditions. The increase in MSH frequency shown here appears to be a viable strategy for enhancing H2 productivity by outdoor cultures of cyanobacteria in high-light environments.


Subject(s)
Anabaena/genetics , Anabaena/metabolism , Hydrogen/metabolism , Photobioreactors/microbiology , Acetylene/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Nitrogen Fixation/genetics , Nitrogen Fixation/physiology , Nitrogenase/metabolism , Nostoc/metabolism
10.
Photosynth Res ; 130(1-3): 479-489, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27341807

ABSTRACT

Ferredoxin-NAD(P)+ oxidoreductase (FNR, [EC 1.18.1.2], [EC 1.18.1.3]) from the green sulfur bacterium Chlorobaculum tepidum (CtFNR) is a homodimeric flavoprotein with significant structural homology to bacterial NADPH-thioredoxin reductases. CtFNR homologs have been found in many bacteria, but only in green sulfur bacteria among photoautotrophs. In this work, we examined the reactions of CtFNR with NADP+, NADPH, and (4S-2H)-NADPD by stopped-flow spectrophotometry. Mixing CtFNRox with NADPH yielded a rapid decrease of the absorbance in flavin band I centered at 460 nm within 1 ms, and then the absorbance further decreased gradually. The magnitude of the decrease increased with increasing NADPH concentration, but even with ~50-fold molar excess NADPH, the absorbance change was only ~45 % of that expected for fully reduced protein. The absorbance in the charge transfer (CT) band centered around 600 nm increased rapidly within 1 ms, then slowly decreased to about 70 % of the maximum. When CtFNRred was mixed with excess NADP+, the absorbance in the flavin band I increased to about 70 % of that of CtFNRox with an apparent rate of ~4 s-1, whereas almost no absorption changes were observed in the CT band. Obtained data suggest that the reaction between CtFNR and NADP+/NADPH is reversible, in accordance with its physiological function.


Subject(s)
Chlorobium/enzymology , Ferredoxin-NADP Reductase/metabolism , NADP/metabolism , Chlorobium/metabolism , Kinetics , Oxidation-Reduction , Protein Structure, Tertiary , Spectrophotometry/methods
11.
Genome Announc ; 3(5)2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26337894

ABSTRACT

We report the complete genome sequence of the purple photosynthetic bacterium Blastochloris viridis belonging to α-Proteobacteria. This is the first completed genome sequence of a phototroph producing bacteriochlorophyll b. The genome information will be useful for further analysis of the photosynthetic energy conversion system and bacteriochlorophyll pigment biosynthesis.

12.
J Biochem ; 158(3): 253-61, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25953913

ABSTRACT

The diazotrophic cyanobacterium Anabaena sp. strain PCC 7120 (A.7120) differentiates into specialized heterocyst cells that fix nitrogen under nitrogen starvation conditions. Although reducing equivalents are essential for nitrogen fixation, little is known about redox systems in heterocyst cells. In this study, we investigated thioredoxin (Trx) networks in Anabaena using TrxM, and identified 16 and 38 candidate target proteins in heterocysts and vegetative cells, respectively, by Trx affinity chromatography (Motohashi et al. (Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA, 2001; 98: , 11224-11229)). Among these, the Fe-S cluster scaffold protein NifU that facilitates functional expression of nitrogenase in heterocysts was found to be a potential TrxM target. Subsequently, we observed that the scaffold activity of N-terminal catalytic domain of NifU is enhanced in the presence of Trx-system, suggesting that TrxM is involved in the Fe-S cluster biogenesis.


Subject(s)
Anabaena/metabolism , Bacterial Proteins/biosynthesis , Thioredoxins/metabolism , Anabaena/genetics , Bacterial Proteins/genetics , Chloroplasts/genetics , Chloroplasts/metabolism , Gene Expression Regulation, Bacterial , Nitrogen/metabolism , Nitrogen Fixation/genetics , Nitrogenase/genetics , Thioredoxins/biosynthesis
13.
Life (Basel) ; 5(1): 997-1018, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25793279

ABSTRACT

Photobiological production of H2 by cyanobacteria is considered to be an ideal source of renewable energy because the inputs, water and sunlight, are abundant. The products of photobiological systems are H2 and O2; the H2 can be used as the energy source of fuel cells, etc., which generate electricity at high efficiencies and minimal pollution, as the waste product is H2O. Overall, production of commercially viable algal fuels in any form, including biomass and biodiesel, is challenging, and the very few systems that are operational have yet to be evaluated. In this paper we will: briefly review some of the necessary conditions for economical production, summarize the reports of photobiological H2 production by cyanobacteria, present our schemes for future production, and discuss the necessity for further progress in the research needed to achieve commercially viable large-scale H2 production.

14.
J Mol Evol ; 79(1-2): 52-62, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25080366

ABSTRACT

A mutant of the phototrophic species belonging to the ß-proteobacteria, Rubrivivax gelatinosus, lacking the photosynthetic growth ability was constructed by the removal of genes coding for the L, M, and cytochrome subunits of the photosynthetic reaction center complex. The L, M, and cytochrome genes derived from five other species of proteobacteria, Acidiphilium rubrum, Allochromatium vinosum, Blastochloris viridis, Pheospirillum molischianum, and Roseateles depolymerans, and the L and M subunits from two other species, Rhodobacter sphaeroides and Rhodopseudomonas palustris, respectively, have been introduced into this mutant. Introduction of the genes from three of these seven species, Rte. depolymerans, Ach. vinosum, and Psp. molischianum, restored the photosynthetic growth ability of the mutant of Rvi. gelatinosus, although the growth rates were 1.5, 9.4, and 10.7 times slower, respectively, than that of the parent strain. Flash-induced kinetic measurements for the intact cells of these three mutants showed that the photo-oxidized cytochrome c bound to the introduced reaction center complex could be rereduced by electron donor proteins of Rvi. gelatinosus with a t1/2 of less than 10 ms. The reaction center core subunits of photosynthetic proteobacteria appear to be exchangeable if the sequence identities of the LM core subunits between donor and acceptor species are high enough, i.e., 70% or more.


Subject(s)
Bacterial Proteins/genetics , Photosynthetic Reaction Center Complex Proteins/genetics , Proteobacteria/genetics , DNA, Bacterial/genetics , Gene Transfer, Horizontal , Genetic Complementation Test , Mutation , Photosynthesis/genetics , Phylogeny , Proteobacteria/growth & development
15.
Biosci Biotechnol Biochem ; 76(4): 831-3, 2012.
Article in English | MEDLINE | ID: mdl-22484933

ABSTRACT

Uptake hydrogenase mutant cells of the cyanobacterium Nostoc sp. PCC 7422 photobiologically produced H(2) catalyzed by nitrogenase for several days in H(2)-barrier transparent plastic bags, and accumulated H(2) in the presence of O(2) evolved by photosynthesis. Their H(2) production activity was higher in the sealed flexible bags than in stoppered serum bottles of fixed gas volume.


Subject(s)
Cyanobacteria/metabolism , Hydrogen/metabolism , Photosynthesis/physiology , Aerobiosis , Bioreactors , Gene Deletion , Hydrogenase/genetics , Membranes, Artificial , Oxygen/metabolism , Plastics , Pliability
16.
Ambio ; 41 Suppl 2: 169-73, 2012.
Article in English | MEDLINE | ID: mdl-22434447

ABSTRACT

To mitigate global warming caused by burning fossil fuels, a renewable energy source available in large quantity is urgently required. We are proposing large-scale photobiological H(2) production by mariculture-raised cyanobacteria where the microbes capture part of the huge amount of solar energy received on earth's surface and use water as the source of electrons to reduce protons. The H(2) production system is based on photosynthetic and nitrogenase activities of cyanobacteria, using uptake hydrogenase mutants that can accumulate H(2) for extended periods even in the presence of evolved O(2). This review summarizes our efforts to improve the rate of photobiological H(2) production through genetic engineering. The challenges yet to be overcome to further increase the conversion efficiency of solar energy to H(2) also are discussed.


Subject(s)
Cyanobacteria/metabolism , Genetic Engineering , Hydrogen/metabolism , Solar Energy , Water/metabolism , Catalytic Domain , Cyanobacteria/genetics , Nitrogenase/metabolism , Photochemistry , Water/chemistry
17.
Appl Environ Microbiol ; 76(20): 6741-50, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20709836

ABSTRACT

Cyanobacteria use sunlight and water to produce hydrogen gas (H2), which is potentially useful as a clean and renewable biofuel. Photobiological H2 arises primarily as an inevitable by-product of N2 fixation by nitrogenase, an oxygen-labile enzyme typically containing an iron-molybdenum cofactor (FeMo-co) active site. In Anabaena sp. strain 7120, the enzyme is localized to the microaerobic environment of heterocysts, a highly differentiated subset of the filamentous cells. In an effort to increase H2 production by this strain, six nitrogenase amino acid residues predicted to reside within 5 Å of the FeMo-co were mutated in an attempt to direct electron flow selectively toward proton reduction in the presence of N2. Most of the 49 variants examined were deficient in N2-fixing growth and exhibited decreases in their in vivo rates of acetylene reduction. Of greater interest, several variants examined under an N2 atmosphere significantly increased their in vivo rates of H2 production, approximating rates equivalent to those under an Ar atmosphere, and accumulated high levels of H2 compared to the reference strains. These results demonstrate the feasibility of engineering cyanobacterial strains for enhanced photobiological production of H2 in an aerobic, nitrogen-containing environment.


Subject(s)
Anabaena/enzymology , Hydrogen/metabolism , Nitrogenase/genetics , Nitrogenase/metabolism , Phototrophic Processes , Acetylene/metabolism , Anabaena/genetics , Catalytic Domain , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutant Proteins/metabolism , Nitrogen/metabolism , Oxidation-Reduction , Sunlight
18.
Adv Exp Med Biol ; 675: 291-303, 2010.
Article in English | MEDLINE | ID: mdl-20532748

ABSTRACT

In order to decrease CO(2) emissions from the burning of fossil fuels, the development of new renewable energy sources sufficiently large in quantity is essential. To meet this need, we propose large-scale H(2) production on the sea surface utilizing cyanobacteria. Although many of the relevant technologies are in the early stage of development, this chapter briefly examines the feasibility of such H(2) production, in order to illustrate that under certain conditions large-scale photobiological H(2) production can be viable. Assuming that solar energy is converted to H(2) at 1.2% efficiency, the future cost of H(2) can be estimated to be about 11 (pipelines) and 26.4 (compression and marine transportation) cents kWh(-1), respectively.


Subject(s)
Biofuels/economics , Cyanobacteria/physiology , Energy Metabolism/physiology , Hydrogen/metabolism , Photobiology , Carbon Dioxide/metabolism , Conservation of Energy Resources , Feasibility Studies , Fossil Fuels , Genetic Engineering , Hydrogenase/metabolism , Nitrogenase/metabolism , Solar Energy
19.
Biosci Biotechnol Biochem ; 74(4): 771-80, 2010.
Article in English | MEDLINE | ID: mdl-20378984

ABSTRACT

In the green sulfur bacterium Chlorobaculum tepidum, three sulfur oxidizing enzyme system (Sox) proteins, SoxAXK, SoxYZ, and SoxB (the core TOMES, thiosulfate oxidizing multi-enzyme system) are essential to in vitro thiosulfate oxidation. We purified monomeric flavoprotein SoxF from this bacterium, which had sulfide dehydrogenase activity. SoxF enhanced the thiosulfate oxidation activity of the purified core TOMES with various cytochromes as electron acceptors to different degrees without any change in the affinity for thiosulfate. The apparent reaction rates with 50 microM- C. tepidum cytochrome c-554 were slightly higher than with horse-heart cytochrome c, and the addition of 0.5 microM- SoxF increased the rate by 92%. The rates with 50 microM- horse-heart cytochrome c and 50 muM- horse-heart cytochrome c plus 0.5 muM- cytochrome c-554 were increased by SoxF by 31% and 120% respectively. We conclude that SoxF mediates electron transfer between the components of core TOMES and externally added cytochromes.


Subject(s)
Chlorobi/metabolism , Flavoproteins/genetics , Thiosulfates/metabolism , Bacteria/enzymology , Bacteria/genetics , Bacteria/metabolism , Chlorobi/enzymology , Chlorobi/genetics , Cytochrome c Group , Cytochromes c/genetics , Cytochromes c/metabolism , Electron Transport/genetics , Flavoproteins/metabolism , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Sulfur/metabolism
20.
Photosynth Res ; 104(2-3): 163-76, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20143161

ABSTRACT

Green sulfur bacteria use various reduced sulfur compounds such as sulfide, elemental sulfur, and thiosulfate as electron donors for photoautotrophic growth. This article briefly summarizes what is known about the inorganic sulfur oxidizing systems of these bacteria with emphasis on the biochemical aspects. Enzymes that oxidize sulfide in green sulfur bacteria are membrane-bound sulfide-quinone oxidoreductase, periplasmic (sometimes membrane-bound) flavocytochrome c sulfide dehydrogenase, and monomeric flavocytochrome c (SoxF). Some green sulfur bacteria oxidize thiosulfate by the multienzyme system called either the TOMES (thiosulfate oxidizing multi-enzyme system) or Sox (sulfur oxidizing system) composed of the three periplasmic proteins: SoxB, SoxYZ, and SoxAXK with a soluble small molecule cytochrome c as the electron acceptor. The oxidation of sulfide and thiosulfate by these enzymes in vitro is assumed to yield two electrons and result in the transfer of a sulfur atom to persulfides, which are subsequently transformed to elemental sulfur. The elemental sulfur is temporarily stored in the form of globules attached to the extracellular surface of the outer membranes. The oxidation pathway of elemental sulfur to sulfate is currently unclear, although the participation of several proteins including those of the dissimilatory sulfite reductase system etc. is suggested from comparative genomic analyses.


Subject(s)
Chlorobi/metabolism , Sulfur/metabolism , Chlorobi/enzymology , Chlorobi/genetics , Electrons , Oxidation-Reduction , Photosynthetic Reaction Center Complex Proteins/metabolism , Prokaryotic Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...