Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Biol Pharm Bull ; 47(2): 394-398, 2024.
Article in English | MEDLINE | ID: mdl-38325828

ABSTRACT

Midbrain dopaminergic neurons respond to rewards and have a crucial role in positive motivation and pleasure. Electrical stimulation of dopaminergic neurons and/or their axonal fibers and arborization has been often used to motivate animals to perform cognitive tasks. Still, the electrical stimulation is incompatible with electrophysiological recordings. In this light, optical stimulation following artificial expression of channelrhodopsin-2 (ChR2) in the cell membrane has been also used, but the expression level of ChR2 varies among researchers. Thus, we attempted to stably express ChR2 fused with a red fluorescence protein, mCherry, in dopaminergic neurons. Since dopamine transporter (DAT) gene is known as a marker for dopaminergic neurons, we inserted ChR2-mCherry into the downstream of the DAT gene locus of the rat genome by clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) genome editing and created DAT-ChR2-mCherry knock-in rats. Immunohistochemistry showed that ChR2-mCherry was expressed in dopaminergic neurons in homozygote knock-in rats, whereas whole-cell recordings revealed that ChR2-mCherry-positive neurons did not fire action potentials upon blue light stimulation, indicating that ChR2 was not functional for optogenetics. Nevertheless, fluorescent labeling of dopaminergic neurons mediated by mCherry could help characterize them physiologically and histologically.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Rats , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Red Fluorescent Protein , Dopaminergic Neurons/metabolism
2.
Nat Commun ; 15(1): 1258, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341439

ABSTRACT

The elucidation of the energy dissipation process is crucial for understanding various phenomena occurring in nature. Yet, the vibrational relaxation and its timescale at the water interface, where the hydrogen-bonding network is truncated, are not well understood and are still under debate. In the present study, we focus on the OH stretch of interfacial water at the air/water interface and investigate its vibrational relaxation by femtosecond time-resolved, heterodyne-detected vibrational sum-frequency generation (TR-HD-VSFG) spectroscopy. The temporal change of the vibrationally excited hydrogen-bonded (HB) OH stretch band (ν=1→2 transition) is measured, enabling us to determine reliable vibrational relaxation (T1) time. The T1 times obtained with direct excitations of HB OH stretch are 0.2-0.4 ps, which are similar to the T1 time in bulk water and do not noticeably change with the excitation frequency. It suggests that vibrational relaxation of the interfacial HB OH proceeds predominantly with the intramolecular relaxation mechanism as in the case of bulk water. The delayed rise and following decay of the excited-state HB OH band are observed with excitation of free OH stretch, indicating conversion from excited free OH to excited HB OH (~0.9 ps) followed by relaxation to low-frequency vibrations (~0.3 ps). This study provides a complete set of the T1 time of the interfacial OH stretch and presents a unified picture of its vibrational relaxation at the air/water interface.

3.
Faraday Discuss ; 248(0): 119-133, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37842815

ABSTRACT

In aprotic lithium-oxygen (Li-O2) batteries, solvent properties are crucial in the charge/discharge processes. Therefore, a thorough understanding of the solvent stability at the cathode surface during the oxygen reduction/evolution reactions (ORR/OER) is essential for the rational design of high-performance electrolytes. In this study, the stability of typical solvents, a series of glyme solvents with different chain lengths, has been investigated during the ORR/OER by in situ vibrational spectroscopy measurements of sum frequency generation (SFG) spectroscopy and infrared reflection absorption spectroscopy (IRRAS). The structural evolution and decomposition mechanism of the solvents during ORR/OER have been discussed based on the observations. Our results demonstrate that superoxide (O2-) generated during the ORR plays a critical role in the stability of the solvents.

4.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38076986

ABSTRACT

To be the most successful, primates must adapt to changing environments and optimize their behavior by making the most beneficial choices. At the core of adaptive behavior is the orbitofrontal cortex (OFC) of the brain, which updates choice value through direct experience or knowledge-based inference. Here, we identify distinct neural circuitry underlying these two separate abilities. We designed two behavioral tasks in which macaque monkeys updated the values of certain items, either by directly experiencing changes in stimulus-reward associations, or by inferring the value of unexperienced items based on the task's rules. Chemogenetic silencing of bilateral OFC combined with mathematical model-fitting analysis revealed that monkey OFC is involved in updating item value based on both experience and inference. In vivo imaging of chemogenetic receptors by positron emission tomography allowed us to map projections from the OFC to the rostromedial caudate nucleus (rmCD) and the medial part of the mediodorsal thalamus (MDm). Chemogenetic silencing of the OFC-rmCD pathway impaired experience-based value updating, while silencing the OFC-MDm pathway impaired inference-based value updating. Our results thus demonstrate a dissociable contribution of distinct OFC projections to different behavioral strategies, and provide new insights into the neural basis of value-based adaptive decision-making in primates.

5.
J Med Food ; 26(11): 843-848, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37862040

ABSTRACT

Angelica keiskei Koidzumi (Ashitaba) is a traditional folk medicine and health supplement in Japan. Ashitaba yellow stem exudate (AYE) contains abundant chalcones and thus has the potential to treat and prevent many pathological states such as cancer, inflammation, obesity, diabetics, thrombosis, and hypertension. Levels of plasminogen activator inhibitor 1 (PAI-1), a key regulator of the fibrinolytic system, increase with age in mouse plasma. Therefore, we aimed to determine the effects of AYE on plasma thrombotic parameters in aging mice. Long-term (52 weeks) AYE supplementation significantly decreased age-induced increases of PAI-1 in mouse plasma. Supplementation with AYE decreased levels of the acute-phase and fibrinolytic protein plasma plasminogen, and significantly decreased those of tumor necrosis factor α. These results suggested that continuous intake of AYE throughout life decreases age-induced systemic inflammation and prevents thrombotic tendencies without affecting body weight gain in aged mice. Our findings showed that supplementing diets with AYE might help to prevent thrombotic diseases in elderly individuals.


Subject(s)
Angelica , Thrombosis , Humans , Animals , Mice , Aged , Plasminogen Activator Inhibitor 1 , Weight Gain , Inflammation/drug therapy , Thrombosis/drug therapy , Thrombosis/prevention & control , Exudates and Transudates , Dietary Supplements
6.
J Neurosci ; 43(39): 6619-6627, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37620158

ABSTRACT

Chemogenetic tools provide an opportunity to manipulate neuronal activity and behavior selectively and repeatedly in nonhuman primates (NHPs) with minimal invasiveness. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are one example that is based on mutated muscarinic acetylcholine receptors. Another channel-based chemogenetic system available for neuronal modulation in NHPs uses pharmacologically selective actuator modules (PSAMs), which are selectively activated by pharmacologically selective effector molecules (PSEMs). To facilitate the use of the PSAM/PSEM system, the selection and dosage of PSEMs should be validated and optimized for NHPs. To this end, we used a multimodal imaging approach. We virally expressed excitatory PSAM (PSAM4-5HT3) in the striatum and the primary motor cortex (M1) of two male macaque monkeys, and visualized its location through positron emission tomography (PET) with the reporter ligand [18F]ASEM. Chemogenetic excitability of neurons triggered by two PSEMs (uPSEM817 and uPSEM792) was evaluated using [18F]fluorodeoxyglucose-PET imaging, with uPSEM817 being more efficient than uPSEM792. Pharmacological magnetic resonance imaging (phMRI) showed that increased brain activity in the PSAM4-expressing region began ∼13 min after uPSEM817 administration and continued for at least 60 min. Our multimodal imaging data provide valuable information regarding the manipulation of neuronal activity using the PSAM/PSEM system in NHPs, facilitating future applications.SIGNIFICANCE STATEMENT Like other chemogenetic tools, the ion channel-based system called pharmacologically selective actuator module/pharmacologically selective effector molecule (PSAM/PSEM) allows remote manipulation of neuronal activity and behavior in living animals. Nevertheless, its application in nonhuman primates (NHPs) is still limited. Here, we used multitracer positron emission tomography (PET) imaging and pharmacological magnetic resonance imaging (phMRI) to visualize an excitatory chemogenetic ion channel (PSAM4-5HT3) and validate its chemometric function in macaque monkeys. Our results provide the optimal agonist, dose, and timing for chemogenetic neuronal manipulation, facilitating the use of the PSAM/PSEM system and expanding the flexibility and reliability of circuit manipulation in NHPs in a variety of situations.


Subject(s)
Ion Channels , Primates , Animals , Male , Reproducibility of Results , Multimodal Imaging , Macaca
7.
Nat Commun ; 14(1): 4762, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553329

ABSTRACT

Recent emphasis has been placed on gene transduction mediated through recombinant adeno-associated virus (AAV) vector to manipulate activity of neurons and their circuitry in the primate brain. In the present study, we created a novel vector of which capsid was composed of capsid proteins derived from both of the AAV serotypes 1 and 2 (AAV1 and AAV2). Following the injection into the frontal cortex of macaque monkeys, this mosaic vector, termed AAV2.1 vector, was found to exhibit the excellence in transgene expression (for AAV1 vector) and neuron specificity (for AAV2 vector) simultaneously. To explore its applicability to chemogenetic manipulation and in vivo calcium imaging, the AAV2.1 vector expressing excitatory DREADDs or GCaMP was injected into the striatum or the visual cortex of macaque monkeys, respectively. Our results have defined that such vectors secure intense and stable expression of the target proteins and yield conspicuous modulation and imaging of neuronal activity.


Subject(s)
Dependovirus , Parvovirinae , Animals , Dependovirus/metabolism , Transduction, Genetic , Genetic Vectors/genetics , Brain/diagnostic imaging , Brain/metabolism , Transgenes , Primates/genetics , Parvovirinae/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Neurons/metabolism
8.
BMC Cardiovasc Disord ; 23(1): 282, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268884

ABSTRACT

BACKGROUND: We evaluated the efficacy of the factor Xa inhibitor rivaroxaban on the differentiation ability of vascular endothelial progenitor cells (EPCs), which play roles in vascular injury repair and atherogenesis. Antithrombotic treatment in patients with atrial fibrillation undergoing percutaneous coronary intervention (PCI) is challenging, and current guidelines recommend oral anticoagulant monotherapy 1 year or more after PCI. However, biological evidence of the pharmacological effects of anticoagulants is insufficient. METHODS: EPC colony-forming assays were performed using peripheral blood-derived CD34-positive cells from healthy volunteers. Adhesion and tube formation of cultured EPCs were assessed in human umbilical cord-derived CD34-positive cells. Endothelial cell surface markers were assessed using flow cytometry, and Akt and endothelial nitric oxide synthase (eNOS) phosphorylation were examined using western blot analysis of EPCs. Adhesion, tube formation and endothelial cell surface marker expression was observed in EPCs transfected with small interfering RNA (siRNA) against protease-activated receptor (PAR)-2. Finally, EPC behaviors were assessed in patients with atrial fibrillation undergoing PCI in whom warfarin was changed to rivaroxaban. RESULTS: Rivaroxaban increased the number of large EPC colonies and increased the bioactivities of EPCs, including adhesion and tube formation. Rivaroxaban also increased vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, Tie-2, and E-selectin expression as well as Akt and eNOS phosphorylation. PAR-2 knockdown increased the bioactivities of EPCs and endothelial cell surface marker expression. Patients in whom the number of large colonies increased after switching to rivaroxaban showed better vascular repair. CONCLUSIONS: Rivaroxaban increased the differentiation ability of EPCs, leading to potential advantages in the treatment of coronary artery disease.


Subject(s)
Atrial Fibrillation , Endothelial Progenitor Cells , Percutaneous Coronary Intervention , Humans , Endothelial Progenitor Cells/metabolism , Rivaroxaban/pharmacology , Rivaroxaban/metabolism , Factor Xa Inhibitors/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor A/metabolism , Atrial Fibrillation/diagnosis , Atrial Fibrillation/drug therapy , Atrial Fibrillation/metabolism , Fibrinolytic Agents/adverse effects , Percutaneous Coronary Intervention/adverse effects , Cell Differentiation/genetics , Cells, Cultured , Cell Movement
9.
Sci Rep ; 13(1): 7625, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37165048

ABSTRACT

The cryptophyte algae, Guillardia theta, possesses 46 genes that are homologous to microbial rhodopsins. Five of them are functionally light-gated cation channelrhodopsins (GtCCR1-5) that are phylogenetically distinct from chlorophyte channelrhodopsins (ChRs) such as ChR2 from Chlamydomonas reinhardtii. In this study, we report the ion channel properties of these five CCRs and compared them with ChR2 and other ChRs widely used in optogenetics. We revealed that light sensitivity varied among GtCCR1-5, in which GtCCR1-3 exhibited an apparent EC50 of 0.21-1.16 mW/mm2, similar to that of ChR2, whereas GtCCR4 and GtCCR5 possess two EC50s, one of which is significantly small (0.025 and 0.032 mW/mm2). GtCCR4 is able to trigger action potentials in high temporal resolution, similar to ChR2, but requires lower light power, when expressed in cortical neurons. Moreover, a high light-sensitive response was observed when GtCCR4 was introduced into blind retina ganglion cells of rd1, a mouse model of retinitis pigmentosa. Thus, GtCCR4 provides optogenetic neuronal activation with high light sensitivity and temporal precision.


Subject(s)
Light , Photophobia , Mice , Animals , Channelrhodopsins , Cations/metabolism , Retinal Ganglion Cells/metabolism , Optogenetics
10.
Sci Adv ; 9(16): eadf4888, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37075119

ABSTRACT

Intracerebral vector delivery in nonhuman primates has been a major challenge. We report successful blood-brain barrier opening and focal delivery of adeno-associated virus serotype 9 vectors into brain regions involved in Parkinson's disease using low-intensity focus ultrasound in adult macaque monkeys. Openings were well tolerated with generally no associated abnormal magnetic resonance imaging signals. Neuronal green fluorescent protein expression was observed specifically in regions with confirmed blood-brain barrier opening. Similar blood-brain barrier openings were safely demonstrated in three patients with Parkinson's disease. In these patients and in one monkey, blood-brain barrier opening was followed by 18F-Choline uptake in the putamen and midbrain regions based on positron emission tomography. This indicates focal and cellular binding of molecules that otherwise would not enter the brain parenchyma. The less-invasive nature of this methodology could facilitate focal viral vector delivery for gene therapy and might allow early and repeated interventions to treat neurodegenerative disorders.


Subject(s)
Blood-Brain Barrier , Parkinson Disease , Animals , Blood-Brain Barrier/metabolism , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Parkinson Disease/genetics , Brain/metabolism , Macaca , Positron-Emission Tomography , Magnetic Resonance Imaging
11.
Nat Commun ; 14(1): 2282, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085491

ABSTRACT

Seeking out good and avoiding bad objects is critical for survival. In practice, objects are rarely good every time or everywhere, but only at the right time or place. Whereas the basal ganglia (BG) are known to mediate goal-directed behavior, for example, saccades to rewarding objects, it remains unclear how such simple behaviors are rendered contingent on higher-order factors, including environmental context. Here we show that amygdala neurons are sensitive to environments and may regulate putative dopamine (DA) neurons via an inhibitory projection to the substantia nigra (SN). In male macaques, we combined optogenetics with multi-channel recording to demonstrate that rewarding environments induce tonic firing changes in DA neurons as well as phasic responses to rewarding events. These responses may be mediated by disinhibition via a GABAergic projection onto DA neurons, which in turn is suppressed by an inhibitory projection from the amygdala. Thus, the amygdala may provide an additional source of learning to BG circuits, namely contingencies imposed by the environment.


Subject(s)
Dopamine , Dopaminergic Neurons , Male , Animals , Dopaminergic Neurons/metabolism , Action Potentials/physiology , Dopamine/metabolism , Substantia Nigra/metabolism , Amygdala/metabolism
12.
Mol Brain ; 16(1): 31, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966302

ABSTRACT

Cognitive functions depend on the time of day in various organisms. Previously, we found that 24-h recognition memory performance of nocturnal mice changes diurnally through SCOP protein-dependent regulation. It remains unknown whether diurnal change and SCOP-dependent regulation of memory performance are conserved across species with diurnal/nocturnal habits. We tested whether the memory performance of diurnal Japanese macaques depends on the time of day. The memory association between bitter taste of drinking water and the nozzle color of the water bottle was established during the light period of the day to evaluate of memory performance for macaques. Here we found diurnal variation of declarative memory in Japanese macaques. The middle of the daytime is the most effective time for memory performance during the light period. To assess whether SCOP is involved in declarative memory performance, we interfered with SCOP expression by using lentiviral vector expressing shRNA against Scop in the hippocampus of Japanese macaques. Scop knockdown in the hippocampus abrogated the memory performance in the middle of the daytime. Our results implicate that SCOP in the hippocampus is necessary for the diurnal rhythm of the memory system and that the SCOP-dependent memory regulation system may be conserved in mammals.


Subject(s)
Cognition , Macaca fuscata , Animals , Circadian Rhythm/physiology , Hippocampus/metabolism , Recognition, Psychology
13.
Nat Commun ; 14(1): 971, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36854724

ABSTRACT

Epilepsy is a disorder in which abnormal neuronal hyperexcitation causes several types of seizures. Because pharmacological and surgical treatments occasionally interfere with normal brain function, a more focused and on-demand approach is desirable. Here we examined the efficacy of a chemogenetic tool-designer receptors exclusively activated by designer drugs (DREADDs)-for treating focal seizure in a nonhuman primate model. Acute infusion of the GABAA receptor antagonist bicuculline into the forelimb region of unilateral primary motor cortex caused paroxysmal discharges with twitching and stiffening of the contralateral arm, followed by recurrent cortical discharges with hemi- and whole-body clonic seizures in two male macaque monkeys. Expression of an inhibitory DREADD (hM4Di) throughout the seizure focus, and subsequent on-demand administration of a DREADD-selective agonist, rapidly suppressed the wide-spread seizures. These results demonstrate the efficacy of DREADDs for attenuating cortical seizure in a nonhuman primate model.


Subject(s)
Body Fluids , Seizures , Male , Animals , Brain , Bicuculline/pharmacology , GABA-A Receptor Antagonists , Macaca
14.
Anal Chem ; 95(9): 4550-4555, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36826446

ABSTRACT

Electrochemical reactions in practical batteries occur in confined environments where anode and cathode electrodes are separated only by a thin separator. Therefore, their electrochemical behaviors may differ from those obtained in the conventional experimental cells, where the two electrodes (working and counter electrodes) are largely separated compared to the batteries. The spatial and temporal distributions of the chemical species in the vicinity of each electrode are highly expected to be determined for quantitatively understanding the phenomena in confined environments. In the present study, we developed a line-detected UV-vis absorption microscope that simultaneously measures space-resolved UV-vis absorption spectra. This novel technique has been successfully applied to evaluate the reactivities of the highly reactive lithium (Li) surfaces in organic electrolyte solutions under in situ conditions. The quantitative evaluations of the dissolution rate of Li and the diffusion constant of the product were successfully realized by analyzing the space- and time-resolved absorption spectra based on Fick's law of diffusion. The microscopic technique is expected to open the door to understanding the fundamental electrochemistry in batteries.

15.
Methods Mol Biol ; 2637: 181-194, 2023.
Article in English | MEDLINE | ID: mdl-36773147

ABSTRACT

In the CRISPR/Cas9-mediated gene cassette knockin (KI) strategy, a gene cassette is integrated into a target locus through a proper DNA repair pathway after the Cas9-induced double-strand DNA breaks; the activation of the DNA repair pathway is known to be correlated with the cell cycle. Recently, we have reported a new KI approach named SPRINT (S-phase pronuclear injection for targeting)-CRISPR, focusing on the correlation between the cell cycle and the KI efficiency in the mouse zygote microinjection. Our results suggest that the CRISPR-mediated KI with a homologous recombination-based donor vector during S-phase enhances the KI efficiency. For SPRINT-CRISPR, the uniformity of the zygotes in the cell cycle is achieved by in vitro fertilization, and the zygotes are cryopreserved until use. These reproductive techniques are necessary for efficient KI. Furthermore, Piezo-assisted microinjection has been successful in improving the survival rate of the injected embryos. In this chapter, we describe the protocols that focus on the zygote preparation and Piezo-assisted microinjection of the SPRINT-CRISPR method.


Subject(s)
CRISPR-Cas Systems , Zygote , Animals , Mice , Zygote/metabolism , CRISPR-Cas Systems/genetics , Microinjections/methods , Homologous Recombination , Gene Knock-In Techniques , DNA/genetics , DNA/metabolism
16.
PLoS One ; 18(1): e0280649, 2023.
Article in English | MEDLINE | ID: mdl-36656905

ABSTRACT

Both Achilles and masticatory muscle tendons are large load-bearing structures, and excessive mechanical loading leads to hypertrophic changes in these tendons. In the maxillofacial region, hyperplasia of the masticatory muscle tendons and aponeurosis affect muscle extensibility resulting in limited mouth opening. Although gene expression profiles of Achilles and patellar tendons under mechanical strain are well investigated in rodents, the gene expression profile of the masticatory muscle tendons remains unexplored. Herein, we examined the gene expression pattern of masticatory muscle tendons and compared it with that of Achilles tendons under tensile strain conditions in the Japanese macaque Macaca fuscata. Primary tenocytes isolated from the masticatory muscle tendons (temporal tendon and masseter aponeurosis) and Achilles tendons were mechanically loaded using the tensile force and gene expression was analyzed using the next-generation sequencing. In tendons exposed to tensile strain, we identified 1076 differentially expressed genes with a false discovery rate (FDR) < 10-10. To identify genes that are differentially expressed in temporal tendon and masseter aponeurosis, an FDR of < 10-10 was used, whereas the FDR for Achilles tendons was set at > 0.05. Results showed that 147 genes are differentially expressed between temporal tendons and masseter aponeurosis, out of which, 125 human orthologs were identified using the Ensemble database. Eight of these orthologs were related to tendons and among them the expression of the glycoprotein nmb and sphingosine kinase 1 was increased in temporal tendons and masseter aponeurosis following exposure to tensile strain. Moreover, the expression of tubulin beta 3 class III, which promotes cell cycle progression, and septin 9, which promotes cytoskeletal rearrangements, were decreased in stretched Achilles tendon cells and their expression was increased in stretched masseter aponeurosis and temporal tendon cells. In conclusion, cyclic strain differentially affects gene expression in Achilles tendons and tendons of the masticatory muscles.


Subject(s)
Achilles Tendon , Tendons , Animals , Humans , Achilles Tendon/metabolism , Gene Expression Profiling , Macaca fuscata , Masseter Muscle/metabolism , Masticatory Muscles/metabolism , Tendons/metabolism
17.
Cereb Cortex ; 33(3): 895-915, 2023 01 05.
Article in English | MEDLINE | ID: mdl-35323915

ABSTRACT

A subcortical pathway through the superior colliculus and pulvinar has been proposed to provide the amygdala with rapid but coarse visual information about emotional faces. However, evidence for short-latency, facial expression-discriminating responses from individual amygdala neurons is lacking; even if such a response exists, how it might contribute to stimulus detection is unclear. Also, no definitive anatomical evidence is available for the assumed pathway. Here we showed that ensemble responses of amygdala neurons in monkeys carried robust information about open-mouthed, presumably threatening, faces within 50 ms after stimulus onset. This short-latency signal was not found in the visual cortex, suggesting a subcortical origin. Temporal analysis revealed that the early response contained excitatory and suppressive components. The excitatory component may be useful for sending rapid signals downstream, while the sharpening of the rising phase of later-arriving inputs (presumably from the cortex) by the suppressive component might improve the processing of facial expressions over time. Injection of a retrograde trans-synaptic tracer into the amygdala revealed presumed monosynaptic labeling in the pulvinar and disynaptic labeling in the superior colliculus, including the retinorecipient layers. We suggest that the early amygdala responses originating from the colliculo-pulvino-amygdalar pathway play dual roles in threat detection.


Subject(s)
Pulvinar , Visual Cortex , Animals , Superior Colliculi/physiology , Emotions , Pulvinar/physiology , Primates
18.
Commun Biol ; 5(1): 1243, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36411342

ABSTRACT

Like humans, common marmoset monkeys utilize family cooperation for infant care, but the neural mechanisms underlying primate parental behaviors remain largely unknown. We investigated infant care behaviors of captive marmosets in family settings and caregiver-infant dyadic situations. Marmoset caregivers exhibited individual variations in parenting styles, comprised of sensitivity and tolerance toward infants, consistently across infants, social contexts and multiple births. Seeking the neural basis of these parenting styles, we demonstrated that the calcitonin receptor-expressing neurons in the marmoset medial preoptic area (MPOA) were transcriptionally activated during infant care, as in laboratory mice. Further, site-specific neurotoxic lesions of this MPOA subregion, termed the cMPOA, significantly reduced alloparental tolerance and total infant carrying, while sparing general health and other social or nonsocial behaviors. These results suggest that the molecularly-defined neural site cMPOA is responsible for mammalian parenting, thus provide an invaluable model to study the neural basis of parenting styles in primates.


Subject(s)
Callithrix , Preoptic Area , Humans , Mice , Animals , Receptors, Calcitonin/genetics , Neurons , Mammals
19.
Surgery ; 172(4): 1093-1101, 2022 10.
Article in English | MEDLINE | ID: mdl-35973873

ABSTRACT

BACKGROUND: The adipose stromal vascular fraction contains abundant mesenchymal stem cells and is utilized for cell therapy of male stress urinary incontinence. The purpose of this paper was to explore the effect of local transplantation of the stromal vascular fraction on improvement of damaged anal sphincter function. METHODS: A rat model of vaginal distension was used as a model of damaged anal sphincter function. The adipose stromal vascular fraction was separated from the inguinal fat of syngeneic green fluorescent protein transgenic rats and delivered into the internal anal sphincter of vaginal distension rats. The maximum resting pressure was evaluated during insertion and withdrawal of the catheter at 4 or 10 days after vaginal distension treatment to estimate anal sphincter function. Green fluorescent protein-transfected human-adipose-derived mesenchymal stem cells were transplanted into the internal anal sphincter of nude rats. Hematoxylin-eosin and Masson trichrome staining were performed to evaluate tissue damage and collagen synthesis. Transplanted cells were identified using a green fluorescent protein antibody and a human-specific antibody. Activation of the transplanted human-ADSC was evaluated by quantitative RT-PCR RESULTS: The mean maximum resting pressure (during catheter withdrawal) of vaginal distension rats was significantly lower than that of control rats, and stromal vascular fraction injection normalized it 4 days after treatment (control: 5.66 ± 0.98, vaginal distension: 4.04 ± 1.28, vaginal distension + stromal vascular fraction: 5.92 ± 1.28 [mmHg, control versus vaginal distension: P = .039; vaginal distension versus vaginal distension + stromal vascular fraction: P = .007]). Histological examination showed that vaginal distension disrupted the internal anal sphincter, and the transplanted syngeneic stromal vascular fraction survived for 10 days. Transplanted xenogeneic human-adipose-derived mesenchymal stem cells survived in the internal anal sphincter of nude rats for 4 and 10 days. Genes related to extracellular remodeling were up-regulated in the transplanted human-adipose-derived mesenchymal stem cells CONCLUSION: Syngeneic and heterotopic transplanted adipose-derived mesenchymal stem cells engrafted in the internal anal sphincter and ameliorated damaged anal sphincter function in a rat model of vaginal distension.


Subject(s)
Anal Canal , Stromal Vascular Fraction , Animals , Collagen , Eosine Yellowish-(YS) , Female , Green Fluorescent Proteins , Hematoxylin , Humans , Male , Rats , Rats, Nude
20.
J Neurosci ; 42(32): 6267-6275, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35794012

ABSTRACT

The orbitofrontal cortex (OFC) and its major downstream target within the basal ganglia-the rostromedial caudate nucleus (rmCD)-are involved in reward-value processing and goal-directed behavior. However, a causal contribution of the pathway linking these two structures to goal-directed behavior has not been established. Using the chemogenetic technology of designer receptors exclusively activated by designer drugs with a crossed inactivation design, we functionally and reversibly disrupted interactions between the OFC and rmCD in two male macaque monkeys. We injected an adeno-associated virus vector expressing an inhibitory designer receptor, hM4Di, into the OFC and contralateral rmCD, the expression of which was visualized in vivo by positron emission tomography and confirmed by postmortem immunohistochemistry. Functional disconnection of the OFC and rmCD resulted in a significant and reproducible loss of sensitivity to the cued reward value for goal-directed action. This decreased sensitivity was most prominent when monkeys had accumulated a certain amount of reward. These results provide causal evidence that the interaction between the OFC and the rmCD is needed for motivational control of action on the basis of the relative reward value and internal drive. This finding extends the current understanding of the physiological basis of psychiatric disorders in which goal-directed behavior is affected, such as obsessive-compulsive disorder.SIGNIFICANCE STATEMENT In daily life, we routinely adjust the speed and accuracy of our actions on the basis of the value of expected reward. Abnormalities in these kinds of motivational adjustments might be related to behaviors seen in psychiatric disorders such as obsessive-compulsive disorder. In the current study, we show that the connection from the orbitofrontal cortex to the rostromedial caudate nucleus is essential for motivational control of action in monkeys. This finding expands our knowledge about how the primate brain controls motivation and behavior and provides a particular insight into disorders like obsessive-compulsive disorder in which altered connectivity between the orbitofrontal cortex and the striatum has been implicated.


Subject(s)
Caudate Nucleus , Motivation , Animals , Caudate Nucleus/physiology , Goals , Humans , Male , Prefrontal Cortex/physiology , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...