Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Pharm Bull (Tokyo) ; 69(5): 464-471, 2021.
Article in English | MEDLINE | ID: mdl-33952856

ABSTRACT

A methanol extract from the underground part of Calanthe discolor Lindl. (Orchidaceae) demonstrated significant proliferative activity on human hair follicle dermal papilla cells (HFDPC, % of control: 120.8 ± 0.2%) at 100 µg/mL against HFDPC. Through bioassay-guided separation of the extract, a new indole glycoside named 6'-O-ß-D-apiofuranosylindican (1) was isolated along with six known compounds (2-7) including three indole glycosides. The stereostructure of 1 was elucidated based on its spectroscopic properties and chemical characteristics. Among the isolates, 1 (110.0 ± 1.0%), glucoindican (3, 123.9 ± 6.8%), and calanthoside (4, 158.6 ± 7.1%) showed significant proliferative activity at 100 µM. Furthermore, the active indole glycosides (1, 3, and 4) upregulated the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-7 (FGF-7) mRNA and protein in HFDPC, which could be the mechanism of their proliferative activity.


Subject(s)
Glycosides/pharmacology , Hair Follicle/drug effects , Indoles/pharmacology , Orchidaceae/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Glycosides/chemistry , Glycosides/isolation & purification , Hair Follicle/cytology , Humans , Indoles/chemistry , Indoles/isolation & purification , Molecular Structure , Stereoisomerism
2.
Biochem Biophys Res Commun ; 463(3): 351-6, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26022127

ABSTRACT

Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. (1)H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes.


Subject(s)
DNA-Binding Proteins/genetics , Forkhead Transcription Factors/genetics , Minichromosome Maintenance 1 Protein/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/cytology , Telomere-Binding Proteins/genetics , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , Forkhead Transcription Factors/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Gene Knockdown Techniques , Genes, Fungal , Metabolome , Minichromosome Maintenance 1 Protein/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Shelterin Complex , Telomere-Binding Proteins/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...