Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Psychoneuroendocrinology ; 82: 173-186, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28551512

ABSTRACT

Emerging evidence implicates impaired self-regulation of the hypothalamic-pituitary-adrenal (HPA) axis and inflammation as important and closely related components of the pathophysiology of major depression. Antidepressants show anti-inflammatory effects and are suggested to enhance glucocorticoid feedback inhibition of the HPA axis. HPA axis activity is also negatively self-regulated by the adrenocorticotropic hormone (ACTH), a potent anti-inflammatory peptide activating five subtypes of melanocortin receptors (MCRs). There are indications that ACTH-mediated feedback can be activated by noncorticotropic N-terminal ACTH fragments such as a potent anti-inflammatory MC1/3/4/5R agonist α-melanocyte-stimulating hormone (α-MSH), corresponding to ACTH(1-13), and a MC3/5R agonist ACTH(4-10). We investigated whether intraperitoneal administration of rats with these peptides affects anhedonia, which is a core symptom of depression. Inflammation-related anhedonia was induced by a single intraperitoneal administration of a low dose (0.025mg/kg) of lipopolysaccharide (LPS). Stress-related anhedonia was induced by the chronic unpredictable stress (CUS) procedure. The sucrose preference test was used to detect anhedonia. We found that ACTH(4-10) pretreatment decreased LPS-induced increase in serum corticosterone and tumor necrosis factor (TNF)-α, and a MC3/4R antagonist SHU9119 blocked this effect. Both α-MSH and ACTH(4-10) alleviated LPS-induced anhedonia. In the CUS model, these peptides reduced anhedonia and normalized body weight gain. The data indicate that systemic α-MSH and ACTH(4-10) produce an antidepressant-like effect on anhedonia induced by stress or inflammation, the stimuli that trigger the release of ACTH and α-MSH into the bloodstream. The results suggest a counterbalancing role of circulating melanocortins in depression and point to a new approach for antidepressant treatment.


Subject(s)
Adrenocorticotropic Hormone/pharmacology , Anhedonia/drug effects , Adrenocorticotropic Hormone/metabolism , Anhedonia/physiology , Animals , Corticosterone/blood , Depressive Disorder, Major/immunology , Depressive Disorder, Major/metabolism , Hypothalamo-Hypophyseal System/metabolism , Inflammation/immunology , Male , Peptide Fragments/pharmacology , Peptides/therapeutic use , Pituitary-Adrenal System/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Corticotropin/metabolism , Receptors, Melanocortin/blood , Receptors, Melanocortin/metabolism , Stress, Psychological/metabolism , alpha-MSH/metabolism , alpha-MSH/pharmacology
2.
Brain Res ; 1117(1): 54-60, 2006 Oct 30.
Article in English | MEDLINE | ID: mdl-16996037

ABSTRACT

The heptapeptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) is an analog of the adrenocorticotropin fragment (4-10) which after intranasal application has profound effects on learning and exerts marked neuroprotective activities. Here, we found that a single application of Semax (50 microg/kg body weight) results in a maximal 1.4-fold increase of BDNF protein levels accompanying with 1.6-fold increase of trkB tyrosine phosporylation levels, and a 3-fold and a 2-fold increase of exon III BDNF and trkB mRNA levels, respectively, in the rat hippocampus. Semax-treated animals showed a distinct increase in the number of conditioned avoidance reactions. We suggest that Semax affects cognitive brain functions by modulating the expression and the activation of the hippocampal BDNF/trkB system.


Subject(s)
Adrenocorticotropic Hormone/analogs & derivatives , Brain-Derived Neurotrophic Factor/drug effects , Hippocampus/drug effects , Peptide Fragments/pharmacology , Receptor, trkB/drug effects , Administration, Intranasal , Adrenocorticotropic Hormone/chemistry , Adrenocorticotropic Hormone/pharmacology , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , Body Weight/drug effects , Body Weight/physiology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cognition/drug effects , Cognition/physiology , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Dose-Response Relationship, Drug , Exons/drug effects , Exons/genetics , Hippocampus/metabolism , Nootropic Agents/pharmacology , Peptide Fragments/chemistry , RNA, Messenger/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Reaction Time/drug effects , Reaction Time/physiology , Receptor, trkB/genetics , Receptor, trkB/metabolism , Up-Regulation/drug effects , Up-Regulation/physiology
3.
J Neurochem ; 97 Suppl 1: 82-6, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16635254

ABSTRACT

The heptapeptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) is an analogue of the N-terminal fragment (4-10) of adrenocorticotropic hormone which, after intranasal application, has profound effects on learning and memory formation in rodents and humans, and also exerts marked neuroprotective effects. A clue to the molecular mechanism underlying this neurotropic action was recently given by the observation that Semax stimulates the synthesis of brain-derived neurotrophic factor (BDNF), a potent modulator of synaptic plasticity, in astrocytes cultured from rat basal forebrain. In the present study, we investigated whether Semax affects BDNF levels in rat basal forebrain upon intranasal application of the peptide. In addition, we examined whether cell membranes isolated from this brain region contained binding sites for Semax. The binding of tritium-labelled Semax was found to be time dependent, specific and reversible. Specific Semax binding required calcium ions and was characterized by a mean+/-SEM dissociation constant (KD) of 2.4+/-1.0 nm and a BMAX value of 33.5+/-7.9 fmol/mg protein. Sandwich immunoenzymatic analysis revealed that Semax applied intranasally at 50 and 250 microg/kg bodyweight resulted in a rapid increase in BDNF levels after 3 h in the basal forebrain, but not in the cerebellum. These results point to the presence of specific binding sites for Semax in the rat basal forebrain. In addition, these findings indicate that the cognitive effects exerted by Semax might be associated, at least in part, with increased BDNF protein levels in this brain region.


Subject(s)
Adrenocorticotropic Hormone/analogs & derivatives , Brain-Derived Neurotrophic Factor/metabolism , Neuroprotective Agents , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Prosencephalon/drug effects , Prosencephalon/metabolism , Administration, Intranasal , Adrenocorticotropic Hormone/metabolism , Adrenocorticotropic Hormone/pharmacology , Animals , Brain-Derived Neurotrophic Factor/genetics , Calcium/pharmacology , Cell Membrane/metabolism , Cells, Cultured , Immunoenzyme Techniques , Male , Manganese/pharmacology , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , RNA, Messenger/analysis , Rats , Rats, Wistar , Tritium
SELECTION OF CITATIONS
SEARCH DETAIL
...