Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(21): 35330-35342, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859267

ABSTRACT

Mid-infrared frequency combs are nowadays well-appreciated sources for spectroscopy and frequency metrology. Here, a comprehensive approach for characterizing a difference-frequency-generated mid-infrared frequency comb (DFG-comb) both in the time and in the frequency domain is presented. An autocorrelation scheme exploiting mid-infrared two-photon detection is used for characterizing the pulse width and to verify the optimal compression of the generated pulses reaching a pulse duration (FWHM) as low as 196 fs. A second scheme based on mid-infrared heterodyne detection employing two independent narrow-linewidth quantum cascade lasers (QCLs) is used for frequency-narrowing the modes of the DFG-comb down to 9.4 kHz on a 5-ms timescale.

2.
J Public Health Res ; 12(3): 22799036231187077, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539442

ABSTRACT

Optical radiation sources, and in particular lasers, find an ever-increasing number of applications in the medical field. It is essential that personnel who are in the presence of an optical radiation source, whether operator, patient or researcher, know precisely the risks inherent in the exposure of the human body to radiation. In order to reduce the risk of biological damage, beyond the provisions of the law on safety regulations, the precise information and accurate preparation of personnel are the main guarantee for the correct use of these sources. In all the application fields, the possibility of a biological damage cannot be completely eliminated, assuming the connotation of occupational risks. In order to understand the risks and operate their effective mitigation, the basic knowledge of the fundamental concepts at the basis of laser-matter interaction will be presented and discussed, with a focus on the physical parameters needed to efficiently estimate and mitigate the related occupational risks, in both a laboratory and clinical context.

3.
Proc Natl Acad Sci U S A ; 119(28): e2122122119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35867750

ABSTRACT

The precise and accurate determination of the radionuclide inventory in radioactive waste streams, including those generated during nuclear decommissioning, is a key aspect in establishing the best-suited nuclear waste management and disposal options. Radiocarbon ([Formula: see text]) is playing a crucial role in this scenario because it is one of the so-called difficult to measure isotopes; currently, [Formula: see text] analysis requires complex systems, such as accelerator mass spectrometry (AMS) or liquid scintillation counting (LSC). AMS has an outstanding limit of detection, but only a few facilities are available worldwide; LSC, which can have similar performance, is more widespread, but sample preparation can be nontrivial. In this paper, we demonstrate that the laser-based saturated-absorption cavity ring-down (SCAR) spectroscopic technique has several distinct advantages and represents a mature and accurate alternative for [Formula: see text] content determination in nuclear waste. As a proof-of-principle experiment, we show consistent results of AMS and SCAR for samples of concrete and graphite originating from nuclear installations. In particular, we determined mole fractions of 1.312(9) F[Formula: see text] and 30.951(7) F[Formula: see text] corresponding to ∼1.5 and 36.2 parts per trillion (ppt), respectively, for two different graphite samples originating from different regions of the Adiabatic Resonance Crossing activator prototype installed on one irradiation line of an MC40 Scanditronix cyclotron. Moreover, we measure a mole fraction of 0.593(8) F[Formula: see text] ([Formula: see text] ppt) from a concrete sample originating from an external wall of the Ispra-1 nuclear research reactor currently in the decommissioning phase.


Subject(s)
Carbon Radioisotopes , Graphite , Radioactive Waste , Waste Management , Carbon Radioisotopes/analysis , Graphite/chemistry , Mass Spectrometry , Radioactive Waste/analysis , Radiometric Dating , Waste Management/methods
4.
Biomol Concepts ; 13(1): 256-271, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35607716

ABSTRACT

The use of light for therapeutic purposes dates back to ancient Egypt, where the sun itself was an innovative source, probably used for the first time to heal skin diseases. Since then, technical innovation and advancement in medical sciences have produced newer and more sophisticated solutions for light-emitting sources and their applications in medicine. Starting from a brief historical introduction, the concept of innovation in light sources is discussed and analysed, first from a technical point of view and then in the light of their fitness to improve existing therapeutic protocols or propose new ones. If it is true that a "pure" technical advancement is a good reason for innovation, only a sub-system of those advancements is innovative for phototherapy. To illustrate this concept, the most representative examples of innovative light sources are presented and discussed, both from a technical point of view and from the perspective of their diffusion and applications in the clinical field.


Subject(s)
Phototherapy , Skin Diseases , Humans , Phototherapy/methods , Skin Diseases/therapy
5.
Opt Lett ; 41(21): 5114-5117, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27805704

ABSTRACT

We report on the generation of coherent mid-infrared radiation around 5.85 µm by difference frequency generation (DFG) of a continuous-wave Nd:YAG laser at 1064 nm and a diode laser at 1301 nm in an orientation-patterned gallium phosphide (OP-GaP) crystal. We provide the first characterization of the linear, thermo-optic, and nonlinear properties of OP-GaP in a DFG configuration. Moreover, by comparing the experimental efficiency to Gaussian beam DFG theory, we derive an effective nonlinear coefficient d=17(3) pm/V for first-order quasi-phase-matched OP-GaP. The temperature and signal wavelength tuning curves are in qualitative agreement with theoretical modeling.

6.
Sensors (Basel) ; 16(2): 238, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26901199

ABSTRACT

The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

SELECTION OF CITATIONS
SEARCH DETAIL
...