Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Bone ; 184: 117086, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552893

ABSTRACT

PURPOSE: Mitofusin 2 (Mfn2) is one of two mitofusins involved in regulating mitochondrial size, shape and function, including mitophagy, an important cellular mechanism to limit oxidative stress. Reduced expression of Mfn2 has been associated with impaired osteoblast differentiation and function and a reduction in the number of viable osteocytes in bone. We hypothesized that the genetic absence of Mfn2 in these cells would increase their susceptibility to aging-associated metabolic stress, leading to a progressive impairment in skeletal homeostasis over time. METHODS: Mfn2 was selectively deleted in vivo at three different stages of osteoblast lineage commitment by crossing mice in which the Mfn2 gene was floxed with transgenic mice expressing Cre under the control of the promoter for Osterix (OSX), collagen1a1, or DMP1 (Dentin Matrix Acidic Phosphoprotein 1). RESULTS: Mice in which Mfn2 was deleted using DMP1-cre demonstrated a progressive and dramatic decline in bone mineral density (BMD) beginning at 10 weeks of age (n = 5 for each sex and each genotype from age 10 to 20 weeks). By 15 weeks, there was evidence for a functional decline in muscle performance as assessed using a rotarod apparatus (n = 3; 2 males/ 1 female for each genotype), accompanied by a decline in lean body mass. A marked reduction in trabecular bone mass was evident on bone histomorphometry, and biomechanical testing at 25 weeks (k/o: 2 male/1 female, control 2 male/2 female) revealed severely impaired femur strength. Extensive regional myofiber atrophy and degeneration was observed on skeletal muscle histology. Electron microscopy showed progressive disruption of cellular architecture, with disorganized sarcomeres and a bloated mitochondrial reticulum. There was also evidence of neurodegeneration within the ventral horn and roots of the lumbar spinal cord, which was accompanied by myelin loss and myofiber atrophy. Deletion of Mfn2 using OSX-cre or Col1a1-cre did not result in a musculoskeletal phenotype. Where possible, male and female animals were analyzed separately, but small numbers of animals in each group limited statistical power. For other outcomes, where sex was not considered, small sample sizes might still limit the strength of the observation. CONCLUSION: Despite known functional overlap of Mfn1 and Mfn2 in some tissues, and their co-expression in bone, muscle and spinal cord, deletion of Mfn2 using the 8 kB DMP1 promoter uncovered an important non-redundant role for Mfn2 in maintaining the neuromuscular/bone axis.


Subject(s)
Bone Density , GTP Phosphohydrolases , Animals , Female , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Male , Mice , Bone Density/genetics , Bone Density/physiology , Mice, Transgenic , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Bone and Bones/pathology , Bone and Bones/metabolism , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Osteoblasts/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics
2.
J Clin Endocrinol Metab ; 109(3): e1061-e1071, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37930769

ABSTRACT

CONTEXT: In clinical trials, burosumab ameliorates symptoms of pain, fatigue, and stiffness and improves performance on certain muscle function studies in patients with X-linked hypophosphatemia (XLH). OBJECTIVE: This work aimed to determine if burosumab increases adenosine triphosphate (ATP) synthesis in skeletal muscle of treatment-naive adults with XLH, and if so, whether that correlates with improved muscle function. METHODS: Ten untreated, symptomatic adults with XLH had ATP synthesis rates measured in the right calf using the 31P magnetic resonance spectroscopy saturation transfer technique. Baseline muscle function tests and symptoms of pain, fatigue, stiffness, and lower-extremity joint pain were quantified. All participants were treated with burosumab, 1 mg/kg every 4 weeks for 12 weeks. ATP synthesis rates and muscle function tests were repeated 2 weeks ("peak") and 4 weeks ("trough") after the third dose of burosumab. RESULTS: All symptoms improved with treatment. Performance on the 6-Minute Walk Test (6MWT) and Sit to Stand (STS) tests also improved. Muscle strength and ATP synthesis rates did not change over the 3 months of the study. When individuals whose performances on the 6MWT and STS test were at or better than the median outcome for those tests were compared to those whose outcomes were below the median, no difference was observed in the rate of change in ATP synthesis. Intracellular muscle concentrations of phosphate were normal. CONCLUSION: The improvement in the 6MWT and STS test without changes in muscle strength or ATP synthesis rates suggests that reductions in pain, fatigue, and stiffness may partly explain the improved performance. Intracellular phosphate in skeletal muscle is insulated from hypophosphatemia in XLH.


Subject(s)
Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal , Familial Hypophosphatemic Rickets , Adult , Humans , Antibodies, Monoclonal/therapeutic use , Familial Hypophosphatemic Rickets/diagnosis , Adenosine Triphosphate , Muscle, Skeletal , Polyphosphates/therapeutic use , Pain/drug therapy , Leg , Fatigue/drug therapy
3.
J Endocr Soc ; 7(11): bvad116, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37860221

ABSTRACT

Individuals with X-linked hypophosphatemia (XLH) are at greater risk for being overweight or obese. Whether there are underlying metabolic abnormalities that put patients with XLH at greater risk for excessive weight gain is largely unknown. Lipocalin-2 (LCN2) has recently received attention as a factor regulating energy consumption and specifically is postulated to be anorexigenic and to improve insulin sensitivity. In a retrospective study, circulating levels of LCN2, leptin, and insulin were measured in 32 patients with XLH, ages 2-60 years, all of whom were being treated with burosumab, and 38 control subjects. Control subjects were chosen who were close in age to those with XLH, with a similar number of participants of each sex. Subjects were analyzed in 3 age cohorts, 2-10 years, 11-18 years, and 20-60 years. In all age groups LCN2 levels were lower in the patients with XLH than in controls but when adjusted for weight class (normal, overweight, obese) the differences were not significant. In contrast, serum leptin levels were significantly lower in children with XLH compared to controls in the 2-10 years age cohort. Serum levels of insulin were also significantly lower in the 2-10-year-old children with XLH when compared with controls. We conclude that changes in expression of lipocalin-2 in children and adolescents with XLH is unlikely to contribute to their risk for obesity in adulthood. It is unclear if lower circulating levels of leptin in these children plays a role in the higher prevalence of obesity among adults with XLH.

4.
J Endocr Soc ; 7(4): bvad022, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36819458

ABSTRACT

Context: X-linked hypophosphatemia (XLH) is a genetic disease, causing life-long hypophosphatemia due to overproduction of fibroblast growth factor 23 (FGF23). XLH is associated with Chiari malformations, cranial synostosis, and syringomyelia. FGF23 signals through FGFR1c and requires a coreceptor, α-Klotho, which is expressed in the renal distal convoluted tubules and the choroid plexus (ChP). In the ChP, α-Klotho participates in regulating cerebrospinal fluid (CSF) production by shuttling the sodium/potassium adenosine triphosphatase (Na+/K+-ATPase) to the luminal membrane. The sodium/potassium/chloride cotransporter 1 (NKCC1) also makes a substantial contribution to CSF production. Objective: Since CSF production has not been studied in XLH, we sought to determine if there are changes in the expression of these molecules in the ChP of Hyp mice, the murine model of XLH, as a first step toward testing the hypothesis that altered CSF production contributes to the cranial and spinal malformations seen this disease. Methods: Semi-quantitative real-time PCR was used to analyze the level of expression of transcripts for Fgfr1c, and thee key regulators of CSF production, Klotho, Atp1a1 and Slc12a2. In situ hybridization was used to provide anatomical localization for the encoded proteins. Results: Real-time polymerase chain reaction (RT-PCR) demonstrated significant upregulation of Klotho transcripts in the fourth ventricle of Hyp mice compared to controls. Transcript levels for Fgfr1c were unchanged in Hyp mice. Atp1a1 transcripts encoding the alpha-1 subunit of Na+/K+-ATPase were significantly downregulated in the third and lateral ventricles (LV). Expression levels of the Slc12a2 transcript (which encodes NKCC1) were unchanged in Hyp mice compared to controls. In situ hybridization (ISH) confirmed the presence of all 4 transcripts in the LV ChP both of WT and Hyp mice. Conclusion: This is the first study to document a significant change in the level of expression of the molecular machinery required for CSF production in Hyp mice. Whether similar changes occur in patients with XLH, potentially contributing to the cranial and spinal cord abnormalities frequently seen in XLH, remains to be determined.

5.
J Bone Miner Res ; 37(11): 2315-2329, 2022 11.
Article in English | MEDLINE | ID: mdl-36245271

ABSTRACT

In this narrative review, we present data gathered over four decades (1980-2020) on the epidemiology, pathophysiology and genetics of primary hyperparathyroidism (PHPT). PHPT is typically a disease of postmenopausal women, but its prevalence and incidence vary globally and depend on a number of factors, the most important being the availability to measure serum calcium and parathyroid hormone levels for screening. In the Western world, the change in presentation to asymptomatic PHPT is likely to occur, over time also, in Eastern regions. The selection of the population to be screened will, of course, affect the epidemiological data (ie, general practice as opposed to tertiary center). Parathyroid hormone has a pivotal role in regulating calcium homeostasis; small changes in extracellular Ca++ concentrations are detected by parathyroid cells, which express calcium-sensing receptors (CaSRs). Clonally dysregulated overgrowth of one or more parathyroid glands together with reduced expression of CaSRs is the most important pathophysiologic basis of PHPT. The spectrum of skeletal disease reflects different degrees of dysregulated bone remodeling. Intestinal calcium hyperabsorption together with increased bone resorption lead to increased filtered load of calcium that, in addition to other metabolic factors, predispose to the appearance of calcium-containing kidney stones. A genetic basis of PHPT can be identified in about 10% of all cases. These may occur as a part of multiple endocrine neoplasia syndromes (MEN1-MEN4), or the hyperparathyroidism jaw-tumor syndrome, or it may be caused by nonsyndromic isolated endocrinopathy, such as familial isolated PHPT and neonatal severe hyperparathyroidism. DNA testing may have value in: confirming the clinical diagnosis in a proband; eg, by distinguishing PHPT from familial hypocalciuric hypercalcemia (FHH). Mutation-specific carrier testing can be performed on a proband's relatives and identify where the proband is a mutation carrier, ruling out phenocopies that may confound the diagnosis; and potentially prevention via prenatal/preimplantation diagnosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Hypercalcemia , Hyperparathyroidism, Primary , Infant, Newborn , Female , Humans , Hyperparathyroidism, Primary/complications , Hyperparathyroidism, Primary/epidemiology , Hyperparathyroidism, Primary/genetics , Calcium , Hypercalcemia/genetics , Receptors, Calcium-Sensing/genetics , Parathyroid Hormone
6.
J Clin Endocrinol Metab ; 108(1): 155-165, 2022 12 17.
Article in English | MEDLINE | ID: mdl-36072994

ABSTRACT

CONTEXT: Burosumab was developed as a treatment option for patients with the rare, lifelong, chronically debilitating, genetic bone disease X-linked hypophosphatemia (XLH). OBJECTIVE: Collect additional information on the safety, immunogenicity, and clinical response to long-term administration of burosumab. METHODS: UX023-CL203 (NCT02312687) was a Phase 2b, open-label, single-arm, long-term extension study of adult subjects with XLH who participated in KRN23-INT-001 or KRN23-INT-002 studies. The long-term UX023-CL203 study (January 5, 2015 through November 30, 2018) provided data up to 184 weeks. Participants in UX023-CL203 received burosumab based on the last dose in the prior KRN23-INT-001 or KRN23-INT-002 studies (0.3, 0.6, or 1.0 mg/kg given by subcutaneous injection every 4 weeks). At Week 12, burosumab could be titrated upward/downward to achieve fasting serum phosphate levels within the normal range. Primary objectives included long-term safety, the proportion of subjects achieving fasting serum phosphate in the normal range, changes in bone turnover markers, patient-reported outcomes for pain and stiffness, and measures of mobility. RESULTS: Fasting serum phosphate levels at the midpoint of the dosing interval (2 weeks postdose, the time of peak effect) were within the normal range in 85% to 100% of subjects. Measures of phosphate metabolism and bone biomarkers generally improved with burosumab therapy, approaching or reaching their respective normal ranges by study end. Improvements in patient-reported outcomes and mobility were sustained throughout the observation period. No new safety findings emerged with longer-term burosumab treatment. CONCLUSION: These data support the conclusion that burosumab therapy may be a safe and effective long-term treatment option for adult patients with XLH.


Subject(s)
Antibodies, Monoclonal, Humanized , Familial Hypophosphatemic Rickets , Genetic Diseases, X-Linked , Adult , Humans , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Familial Hypophosphatemic Rickets/drug therapy , Phosphates , Genetic Diseases, X-Linked/drug therapy
7.
Menopause ; 29(10): 1200-1203, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35969885

ABSTRACT

OBJECTIVE: The aim of this study was to examine the effect of either conjugated equine estrogen or transdermal estradiol on vitamin D metabolism in postmenopausal women. METHODS: Twenty-five women from the Kronos Early Estrogen Prevention Study who were randomized to conjugated equine estrogen 0.45 mg/d and 20 women who were treated with transdermal estradiol 50 mg/d (patch replaced weekly) were analyzed in the present study. All participants received micronized progesterone for 12 days per month. RESULTS: There was no significant treatment effect on serum total 25-hydroxyvitamin D over 48 months in either study group, and there were no significant differences between treatment arms. In contrast, at 12 months, directly measured free 25-hydroxyvitamin D was significantly higher in the transdermal estradiol group than in the conjugated equine estrogen group. Directly measured free 25-hydroxyvitamin D subsequently increased significantly from 12 to 48 months in both treatment arms. Calculated free 25-hydroxyvitamin D was also significantly higher in the transdermal estradiol group at 36 months. Vitamin D-binding protein decreased significantly in both treatment groups from 12 to 48 months, but at 48 months, least square mean values were no different based on treatment assignment. CONCLUSIONS: Directly measured free 25-hydroxyvitamin D levels, but not serum total 25-hydroxyvitamin D levels, are different within the first 12 months of estrogen replacement depending on the preparation. However, this difference is transient, in that there were no differences at 36 or 48 months. These findings suggest that there may be a short-term benefit to prescribing transdermal estradiol for women who are either vitamin D deficient or vitamin D insufficient.


Subject(s)
Estradiol , Estrogens, Conjugated (USP) , Administration, Cutaneous , Administration, Oral , Estradiol/pharmacology , Estrogen Replacement Therapy , Estrogens/pharmacology , Estrogens, Conjugated (USP)/pharmacology , Female , Humans , Longitudinal Studies , Postmenopause , Progesterone , Vitamin D/pharmacology , Vitamin D-Binding Protein/pharmacology
8.
Calcif Tissue Int ; 111(4): 409-418, 2022 10.
Article in English | MEDLINE | ID: mdl-35927518

ABSTRACT

The anti-fibroblast growth factor 23 monoclonal antibody burosumab corrects hypophosphatemia in adults with X-linked hypophosphatemia (XLH) and improves pain, stiffness, physical function, and fatigue. This post hoc subgroup analysis used data from the 24-week placebo-controlled period of a phase 3 study in 134 adults with XLH (ClinicalTrials.gov NCT02526160), to assess whether the benefits of burosumab are evident in 14 clinically relevant subgroups defined by baseline demographic and functional criteria, including sex, Brief Pain Inventory-short form (BPI-SF) Average And Worst Pain, region, race, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC®) Stiffness, Physical Function and Pain domains and total score, use of opioid/other pain medication, active fractures/pseudo-fractures, and 6-min walk test distance. There were no statistically significant interactions between any of the subgroups and treatment arm for any endpoint. Higher proportions of subjects achieved mean serum phosphate concentration above the lower limit of normal (the primary endpoint) with burosumab than with placebo in all subgroups. For the key secondary endpoints (WOMAC Stiffness and Physical Function; BPI-SF Worst Pain) individual subgroup categories showed improvements with burosumab relative to placebo. For additional efficacy endpoints, burosumab was favored in some subgroups but differences were not significant and confidence intervals were wide. For some endpoints the treatment effect is small at 24 weeks in all subjects. This subgroup analysis shows that burosumab was largely superior to placebo across endpoints in the 14 clinically relevant subgroup variables at 24 weeks and is likely to benefit all symptomatic adults with active XLH.


Subject(s)
Familial Hypophosphatemic Rickets , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Double-Blind Method , Familial Hypophosphatemic Rickets/drug therapy , Humans , Pain , Treatment Outcome
9.
J Clin Endocrinol Metab ; 107(3): e1249-e1262, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34636401

ABSTRACT

CONTEXT: Patients with X-linked hypophosphatemia (XLH) experience multiple musculoskeletal manifestations throughout adulthood. OBJECTIVE: To describe the burden of musculoskeletal features and associated surgeries across the lifespan of adults with XLH. METHODS: Three groups of adults were analyzed: subjects of a clinical trial, participants in an online survey, and a subgroup of the online survey participants considered comparable to the clinical trial subjects (according to Brief Pain Inventory worst pain scores of ≥ 4). In each group, the adults were categorized by age: 18-29, 30-39, 40-49, 50-59, and ≥ 60 years. Rates of 5 prespecified musculoskeletal features and associated surgeries were investigated across these age bands for the 3 groups. RESULTS: Data from 336 adults were analyzed. In all 3 groups, 43% to 47% had a history of fracture, with the proportions increasing with age. The overall prevalence of osteoarthritis was > 50% in all 3 groups, with a rate of 23% to 37% in the 18- to 29-year-old group, and increasing with age. Similar patterns were observed for osteophytes and enthesopathy. Hip and knee arthroplasty was reported even in adults in their 30s. Spinal stenosis was present at a low prevalence, increasing with age. The proportion of adults with ≥ 2 musculoskeletal features was 59.1%, 55.0%, and 61.3% in the clinical trial group, survey group, and survey pain subgroup, respectively. CONCLUSION: This analysis confirmed high rates of multiple musculoskeletal features beginning as early as age 20 years among adults with XLH and gradually accumulating with age.


Subject(s)
Familial Hypophosphatemic Rickets/complications , Fractures, Bone/epidemiology , Osteoarthritis/epidemiology , Spinal Stenosis/epidemiology , Adolescent , Adult , Age Factors , Aged , Arthroplasty/statistics & numerical data , Cost of Illness , Cross-Sectional Studies , Female , Fractures, Bone/etiology , Humans , Male , Middle Aged , Osteoarthritis/etiology , Osteoarthritis/surgery , Prevalence , Risk Factors , Self Report/statistics & numerical data , Spinal Stenosis/etiology , Young Adult
10.
Med Clin North Am ; 105(6): 1117-1134, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34688418

ABSTRACT

Osteoporosis is a metabolic bone disease characterized by low bone mass and microarchitectural deterioration of bone tissue leading to an increased risk of fragility fractures. Central dual-energy X-ray absorptiometry measurements are the gold standard for determining bone mineral density. A well-balanced diet containing adequate amounts of calcium and vitamin D, exercise, smoking cessation, and limited alcohol intake are important to maintain bone health. Pharmacologic agents should be recommended in postmenopausal women who are at high risk for fractures. Newer anabolic therapies including teriparatide, abaloparatide, and romosozumab have emerged for use in severe osteoporosis.


Subject(s)
Osteoporosis/diagnosis , Osteoporosis/physiopathology , Absorptiometry, Photon , Accidental Falls/prevention & control , Aging/physiology , Bone Density , Bone Density Conservation Agents/therapeutic use , Diet , Exercise , Female , Fractures, Bone/epidemiology , Humans , Menopause/physiology , Middle Aged , Osteoporosis/drug therapy , Osteoporosis/epidemiology , Osteoporosis, Postmenopausal , Racial Groups , Risk Factors , Selective Estrogen Receptor Modulators/therapeutic use
11.
RMD Open ; 7(3)2021 09.
Article in English | MEDLINE | ID: mdl-34548383

ABSTRACT

OBJECTIVES: To report the impact of burosumab on patient-reported outcomes (PROs) and ambulatory function in adults with X-linked hypophosphataemia (XLH) through 96 weeks. METHODS: Adults diagnosed with XLH were randomised 1:1 in a double-blinded trial to receive subcutaneous burosumab 1 mg/kg or placebo every 4 weeks for 24 weeks (NCT02526160). Thereafter, all subjects received burosumab every 4 weeks until week 96. PROs were measured using the Western Ontario and the McMaster Universities Osteoarthritis Index (WOMAC), Brief Pain Inventory-Short Form (BPI-SF) and Brief Fatigue Inventory (BFI), and ambulatory function was measured with the 6 min walk test (6MWT). RESULTS: Subjects (N=134) were randomised to burosumab (n=68) or placebo (n=66) for 24 weeks. At baseline, subjects experienced pain, stiffness, and impaired physical and ambulatory function. At week 24, subjects receiving burosumab achieved statistically significant improvement in some BPI-SF scores, BFI worst fatigue (average and greatest) and WOMAC stiffness. At week 48, all WOMAC and BPI-SF scores achieved statistically significant improvement, with some WOMAC and BFI scores achieving meaningful and significant change from baseline. At week 96, all WOMAC, BPI-SF and BFI achieved statistically significant improvement, with selected scores in all measures also achieving meaningful change. Improvement in 6MWT distance and percent predicted were statistically significant at all time points from 24 weeks. CONCLUSIONS: Adults with XLH have substantial burden of disease as assessed by PROs and 6MWT. Burosumab treatment improved phosphate homoeostasis and was associated with a steady and consistent improvement in PROs and ambulatory function. TRIAL REGISTRATION NUMBER: NCT02526160.


Subject(s)
Familial Hypophosphatemic Rickets , Adult , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Humans , Patient Reported Outcome Measures
13.
PLoS One ; 16(2): e0247199, 2021.
Article in English | MEDLINE | ID: mdl-33607650

ABSTRACT

The receptor for Colony Stimulating Factor 1 (CSF1), c-fms, is highly expressed on mature osteoclasts suggesting a role for this cytokine in regulating the function of these cells. Consistent with this idea, in vitro studies have documented a variety of effects of CSF1 in mature osteoclasts. To better define the role of CSF1 in these cells, we conditionally deleted c-fms in osteoclasts (c-fms-OC-/-) by crossing c-fmsflox/flox mice with mice expressing Cre under the control of the cathepsin K promoter. The c-fms-OC-/- mice were of normal weight and had normal tooth eruption. However, when quantified by DXA, bone mass was significantly higher in the spine and femur of female knock out mice and in the femurs of male knock out mice. MicroCT analyses of femurs showed that female c-fms-OC-/- mice had significantly increased trabecular bone mass with a similar trend in males and both sexes demonstrated significantly increased trabecular number and reduced trabecular spacing. Histomorphometric analysis of the femoral trabecular bone compartment demonstrated a trend towards increased numbers of osteoclasts, +26% in Noc/BPm and +22% in OcS/BS in the k/o animals but this change was not significant. However, when the cellular volume of osteoclasts was quantified, the c-fms-OC-/- cells were found to be significantly smaller than controls. Mature osteoclasts show a marked spreading response when exposed to CSF1 in a non-gradient fashion. However, osteoclasts freshly isolated from c-fms-OC-/- mice had a near complete abrogation of this response. C-fms-OC-/- mice treated with (1-34)hPTH 80 ng/kg/d in single daily subcutaneous doses for 29 days showed an attenuated anabolic response in trabecular bone compared to wild-type animals. Taken together, these data indicate an important non-redundant role for c-fms in regulating mature osteoclast function in vivo.


Subject(s)
Receptor, Macrophage Colony-Stimulating Factor/genetics , Animals , Bone Density/drug effects , Cancellous Bone/diagnostic imaging , Cancellous Bone/pathology , Cell Differentiation , Female , Femur/cytology , Femur/metabolism , Femur/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoclasts/cytology , Osteoclasts/metabolism , Osteogenesis , Parathyroid Hormone/pharmacology , Peptide Fragments/pharmacology , Receptor, Macrophage Colony-Stimulating Factor/deficiency , X-Ray Microtomography
14.
Endocrinology ; 162(5)2021 05 01.
Article in English | MEDLINE | ID: mdl-33640975

ABSTRACT

Sphingosine-1-phosphate (S1P) is an anabolic clastokine. Sphingosine kinase (SPHK) is the rate-limiting enzyme in S1P production and has 2 isoforms. To evaluate the roles of SPHK1 and SPHK2 in bone, we examined the skeletal phenotype of mice with selective deletion of SPHK1 in osteoclasts (SPHK1-Oc-/-) and mice in which the SPHK2 gene was deleted in all tissues (SPHK2-/-). SPHK1-Oc-/- had normal bone mass. By contrast, SPHK2-/- female mice had a 14% lower spinal bone mineral density (BMD; P < 0.01) and males a 22% lower BMD at the same site (P < 0.001). SPHK2-/- and control mice were subsequently treated either with daily parathyroid hormone [PTH](1-34) or vehicle for 29 days. The response to PTH was significantly attenuated in the SPHK2-/-mice. The mean femoral bone volume to total volume fraction (BV/TV) increased by 24.8% in the PTH-treated female control animals vs 10.6% in the vehicle-treated female controls (P < 0.01). In contrast, in the SPHK2-/- female mice the difference in femoral trabecular BV/TV at the end of treatment was not significant (20.5 vs13.3%, PTH vs vehicle, P = NS). The anabolic response to PTH was significantly attenuated in the spine of male SPHK2-/- mice (29.7% vs 23.1%, PTH vs vehicle, in controls, P < 0.05; 26.9% vs 19.5% PTH vs vehicle in SPHK2-/- mice, P = NS). The spine responded normally in the SPHK2-/- female mice. Interestingly, suppression of sclerostin was blunted in the SPHK2-/- mice when those animals were treated with an anabolic PTH regimen. We conclude that SPHK2 has an important role in mediating both normal bone remodeling and the anabolic response to PTH.


Subject(s)
Anabolic Agents/metabolism , Femur/metabolism , Parathyroid Hormone/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Spine/metabolism , Animals , Bone Density , Female , Femur/chemistry , Male , Mice , Mice, Knockout , Osteoclasts/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Spine/chemistry
15.
J Bone Miner Res ; 36(4): 627-635, 2021 04.
Article in English | MEDLINE | ID: mdl-33338281

ABSTRACT

Tumor-induced osteomalacia (TIO) is caused by phosphaturic mesenchymal tumors producing fibroblast growth factor 23 (FGF23) and is characterized by impaired phosphate metabolism, skeletal health, and quality of life. UX023T-CL201 is an ongoing, open-label, phase 2 study investigating the safety and efficacy of burosumab, a fully human monoclonal antibody that inhibits FGF23, in adults with TIO or cutaneous skeletal hypophosphatemia syndrome (CSHS). Key endpoints were changes in serum phosphorus and osteomalacia assessed by transiliac bone biopsies at week 48. This report focuses on 14 patients with TIO, excluding two diagnosed with X-linked hypophosphatemia post-enrollment and one with CSHS. Serum phosphorus increased from baseline (0.52 mmol/L) and was maintained after dose titration from week 22 (0.91 mmol/L) to week 144 (0.82 mmol/L, p < 0.0001). Most measures of osteomalacia were improved at week 48: osteoid volume/bone, osteoid thickness, and mineralization lag time decreased; osteoid surface/bone surface showed no change. Of 249 fractures/pseudofractures detected across 14 patients at baseline, 33% were fully healed and 13% were partially healed at week 144. Patients reported a reduction in pain and fatigue and an increase in physical health. Two patients discontinued: one to treat an adverse event (AE) of neoplasm progression and one failed to meet dosing criteria (receiving minimal burosumab). Sixteen serious AEs occurred in seven patients, and there was one death; all serious AEs were considered unrelated to treatment. Nine patients had 16 treatment-related AEs; all were mild to moderate in severity. In adults with TIO, burosumab exhibited an acceptable safety profile and was associated with improvements in phosphate metabolism and osteomalacia. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research..


Subject(s)
Osteomalacia , Quality of Life , Adult , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Humans , Osteomalacia/drug therapy , Paraneoplastic Syndromes
16.
Calcif Tissue Int ; 108(1): 143-157, 2021 01.
Article in English | MEDLINE | ID: mdl-32504139

ABSTRACT

FGF23 is a hormone produced by osteocytes in response to an elevation in the concentration of extracellular phosphate. Excess production of FGF23 by bone cells, or rarely by tumors, is the hormonal basis for several musculoskeletal syndromes characterized by hypophosphatemia due to renal phosphate wasting. FGF23-dependent chronic hypophosphatemia causes rickets and osteomalacia, as well as other skeletal complications. Genetic disorders of FGF23-mediated hypophosphatemia include X-linked hypophosphatemia (XLH), autosomal dominant hypophosphatemic rickets (ADHR), autosomal recessive hypophosphatemic rickets (ARHR), fibrous dysplasia of bone, McCune-Albright syndrome, and epidermal nevus syndrome (ENS), also known as cutaneous skeletal hypophosphatemia syndrome (CSHS). The principle acquired form of FGF23-mediated hypophosphatemia is tumor-induced osteomalacia (TIO). This review summarizes current knowledge about the pathophysiology and clinical presentation of the most common FGF23-mediated conditions, with a focus on new treatment modalities. For many decades, calcitriol and phosphate supplements were the mainstay of therapy. Recently, burosumab, a monoclonal blocking antibody to FGF23, has been approved for treatment of XLH in children and adults, and an active comparator trial in children has shown good efficacy and safety for this drug. The remainder of FGF23-mediated hypophosphatemic disorders continue to be treated with phosphate and calcitriol, although ongoing trials with burosumab for treatment of tumor-induced osteomalacia show early promise. Burosumab may be an effective treatment for the remainder of FGF23-mediated disorders, but clinical trials to support that possibility are at present not available.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Familial Hypophosphatemic Rickets , Fibroblast Growth Factors/genetics , Hypophosphatemia , Adult , Antibodies, Monoclonal , Child , Familial Hypophosphatemic Rickets/drug therapy , Fibroblast Growth Factor-23 , Humans , Hypophosphatemia/drug therapy , Osteomalacia , Phosphates
17.
Int J Womens Dermatol ; 7(5Part A): 545-551, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35024411

ABSTRACT

Glucocorticoid-induced osteoporosis (GIOP) is a frequently encountered and serious side effect of glucocorticoid use. Bone loss leading to an increased risk for fracture occurs early in the use of glucocorticoids, yet patients at risk for this complication are often undertreated. All physicians prescribing glucocorticoids should therefore be familiar with a basic approach to anticipating and preventing GIOP when starting patients on glucocorticoid therapy. This manuscript and its case vignettes are designed to help dermatologists assess and manage bone health to prevent GIOP in patients receiving glucocorticoid therapy.

18.
Calcif Tissue Int ; 107(1): 52-59, 2020 07.
Article in English | MEDLINE | ID: mdl-32246175

ABSTRACT

Sphingosine-1-phosphate (S1P) is an anabolic clastokine. Colony Stimulating Factor 1 (CSF1) induces expression of the rate limiting enzyme required for S1P synthesis, sphingosine kinase 1 (SPHK1) in bone in vivo, and in osteoclasts in vitro. To study the mechanism of CSF1-induced SPHK1 gene expression, a 2608 bp fragment of the murine SPHK1 gene (- 2497 to + 111 bp relative to the transcription start site) was cloned and transfected into pZen cells (murine fibroblasts engineered to express c-fms). SPHK1 promoter activity was assessed using a dual-luciferase reporter assay system. By analyzing a series of 5'-deletions, a CSF1-responsive region was identified in the region - 1250 to - 1016 bp. To define putative DNA binding site(s) in this fragment, two biotin-labeled fragments that completely overlapped this region were generated, one 163 bp in length (- 1301 to - 1139) and one 169 bp in length (- 1157 to - 989). EMSAs revealed the 163 bp fragment as the target for protein binding. Using EMSAs, the nuclear protein binding region was further narrowed to an 85 bp fragment, (- 1223 to - 1139). Using a series of unlabeled DNA sequences as "cold competitors" in EMSAs, a 22 bp sequence is identified as the smallest fragment that could successfully compete away protein binding. The same 22 bp sequence also competed DNA binding in EMSAs using nuclear protein isolated from primary murine osteoclasts. A full-length wild-type SPHK1 promoter and an SPHK1 promoter in which the ATGGGGG motif was mutated were subsequently expressed in pZen cells. Mutating this ATGGGGG motif nearly completely abrogated the ability of CSF1 to activate the promoter. Although two transcription factors, KLF6 and Sp1 have been reported to bind to this sequence, supershift EMSAs failed to detect either among the proteins bound to the 85 bp DNA fragment.


Subject(s)
DNA , Macrophage Colony-Stimulating Factor , Phosphotransferases (Alcohol Group Acceptor)/genetics , Transcription, Genetic , Animals , Binding Sites , Cells, Cultured , Fibroblasts , Mice , Transcription Factors/genetics , Transcriptional Activation
19.
20.
J Bone Miner Res ; 34(12): 2183-2191, 2019 12.
Article in English | MEDLINE | ID: mdl-31369697

ABSTRACT

In adults with X-linked hypophosphatemia (XLH), excess FGF23 impairs renal phosphate reabsorption and suppresses production of 1,25-dihydroxyvitamin D, resulting in chronic hypophosphatemia and persistent osteomalacia. Osteomalacia is associated with poor bone quality causing atraumatic fractures, pseudofractures, delayed fracture healing, and bone pain. Burosumab is a fully human monoclonal antibody against FGF23. UX023-CL304 is an ongoing, open-label, single-arm, phase 3 study investigating the efficacy of subcutaneous burosumab, 1.0 mg/kg administered every 4 weeks, in improving osteomalacia in adults with XLH who have not been treated for at least 2 years before enrollment. The primary endpoint was improvement in osteoid volume/bone volume assessed by transiliac bone biopsies obtained at baseline and week 48. Additional assessments included serum phosphorus, markers of bone turnover, fracture/pseudofracture healing, and safety. Fourteen subjects enrolled, 13 completed 48 weeks, and 11 completed paired biopsies. All osteomalacia-related histomorphometric measures improved significantly at week 48 (mean percent change: osteoid volume/bone volume, -54%, osteoid thickness, -32%, osteoid surface/bone surface, -26%, [median] mineralization lag time, -83%). Mean serum phosphorus concentration averaged across the mid-point of the dose cycle between weeks 0 and 24 was 3.3 mg/dL, a 50% increase from 2.2 mg/dL at baseline. Markers of bone formation and resorption increased at week 48 (least squares [LS] mean increase: P1NP, +77%; CTx, +36%; both p < 0.0001). All subjects had one or more treatment-emergent adverse event (AE). Most AEs were mild to moderate in severity. Two subjects experienced serious AEs (migraine; paresthesia) that were unrelated to treatment and resolved. Eleven subjects had 18 biopsy procedure-related AEs: 14 for pain, two for itch, and one each for headache and bandage irritation. No deaths or incidents of hyperphosphatemia occurred. In conclusion, by normalizing phosphate homeostasis, burosumab significantly improved osteomalacia in adults with XLH, which likely explains the improved fracture healing and amelioration of skeletal complications. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Familial Hypophosphatemic Rickets/drug therapy , Internationality , Osteomalacia/drug therapy , Adult , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized , Biomarkers/blood , Familial Hypophosphatemic Rickets/blood , Female , Fibroblast Growth Factor-23 , Humans , Male , Osteogenesis , Patient Reported Outcome Measures , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...