Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 6478, 2019 04 24.
Article in English | MEDLINE | ID: mdl-31019244

ABSTRACT

Glucagon has been shown to be beneficial as a treatment for bronchospasm in asthmatics. Here, we investigate if glucagon would prevent airway hyperreactivity (AHR), lung inflammation, and remodeling in a murine model of asthma. Glucagon (10 and 100 µg/Kg, i.n.) significantly prevented AHR and eosinophilia in BAL and peribronchiolar region induced by ovalbumin (OVA) challenge, while only the dose of 100 µg/Kg of glucagon inhibited subepithelial fibrosis and T lymphocytes accumulation in BAL and lung. The inhibitory action of glucagon occurred in parallel with reduction of OVA-induced generation of IL-4, IL-5, IL-13, TNF-α, eotaxin-1/CCL11, and eotaxin-2/CCL24 but not MDC/CCL22 and TARC/CCL17. The inhibitory effect of glucagon (100 µg/Kg, i.n.) on OVA-induced AHR and collagen deposition was reversed by pre-treatment with indomethacin (10 mg/Kg, i.p.). Glucagon increased intracellular cAMP levels and inhibits anti-CD3 plus anti-CD28-induced proliferation and production of IL-2, IL-4, IL-10, and TNF- α from TCD4+ cells in vitro. These findings suggest that glucagon reduces crucial features of asthma, including AHR, lung inflammation, and remodeling, in a mechanism probably associated with inhibition of eosinophils accumulation and TCD4+ cell proliferation and function. Glucagon should be further investigated as an option for asthma therapy.


Subject(s)
Airway Remodeling/drug effects , Bronchial Hyperreactivity/prevention & control , Glucagon/pharmacology , Ovalbumin/pharmacology , Pneumonia/prevention & control , Animals , Asthma/prevention & control , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Cell Proliferation/drug effects , Chemokine CCL24/metabolism , Cytokines/metabolism , Lung/drug effects , Lung/metabolism , Mice, Inbred Strains , Receptors, Glucagon/metabolism
2.
Front Immunol ; 9: 1336, 2018.
Article in English | MEDLINE | ID: mdl-29951068

ABSTRACT

Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are highly similar neuropeptides present in several tissues, endowed with immunoregulatory functions and other systemic effects. We previously reported that both neuropeptides reduce viral production in HIV-1-infected primary macrophages, with the participation of ß-chemokines and IL-10, and now we describe molecular mechanisms engaged in this activity. Macrophages exposed to VIP or PACAP before HIV-1 infection showed resistance to viral replication, comparable to that observed when the cells were treated after infection. Also, multiple treatments with a suboptimal dose of VIP or PACAP after macrophage infection resulted in a decline of virus production similar to the inhibition promoted by a single exposure to the optimal inhibitory concentration. Cellular signaling pathways involving cAMP production and activation of protein kinases A and C were critical components of the VIP and PACAP anti-HIV-1 effects. Analysis of the transcription factors and the transcriptional/cell cycle regulators showed that VIP and PACAP induced cAMP response element-binding protein activation, inhibited NF-kB, and reduced Cyclin D1 levels in HIV-1-infected cells. Remarkably, VIP and PACAP promoted G-to-A mutations in the HIV-1 provirus, matching those derived from the activity of the APOBEC family of viral restriction factors, and reduced viral infectivity. In conclusion, our findings strengthen the antiretroviral potential of VIP and PACAP and point to new therapeutic approaches to control the progression of HIV-1 infection.

3.
Eur J Pharmacol ; 812: 64-72, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28688914

ABSTRACT

Glucagon and glucagon-like peptide-1 (GLP-1) are polypeptide hormones that are produced by pancreatic α-cells and the intestine, respectively, whose main function is to control glucose homeostasis. The glucagon and GLP-1 levels are imbalanced in diabetes. Furthermore, type 1 diabetic patients and animals present with a diminished inflammatory response, which is related to some morbidities of diabetes, such as a higher incidence of infectious diseases, including sepsis. The focus of this review is to briefly summarize the state of the art concerning the effects of glucagon and GLP-1 on the inflammatory response. Here, we propose that glucagon and GLP-1 have anti-inflammatory properties, making them possible prototypes for the design and synthesis of new compounds to treat inflammatory diseases. In addition, glucagon, GLP-1 or their analogues or new derivatives may not only be important for managing inflammatory diseases but may also have the therapeutic potential to prevent, cure or ameliorate diabetes in patients by counteracting the deleterious effects of pro-inflammatory cytokines on the function and viability of pancreatic ß-cells. In addition, GLP-1, its analogues or drugs that inhibit GLP-1 metabolism may have a doubly beneficial effect in diabetic patients by inhibiting the inflammatory response and reducing glycaemia.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Glucagon-Like Peptide 1/pharmacology , Glucagon/pharmacology , Immunologic Factors/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Glucagon/therapeutic use , Glucagon-Like Peptide 1/therapeutic use , Humans , Immunologic Factors/therapeutic use , Inflammation/drug therapy , Inflammation/immunology
4.
J Endocrinol ; 225(3): 205-17, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26021821

ABSTRACT

Glucagon is a hyperglycemic pancreatic hormone that has been shown to provide a beneficial effect against asthmatic bronchospasm. We investigated the role of this hormone on airway smooth muscle contraction and lung inflammation using both in vitro and in vivo approaches. The action of glucagon on mouse cholinergic tracheal contraction was studied in a conventional organ bath system, and its effect on airway obstruction was also investigated using the whole-body pletysmographic technique in mice. We also tested the effect of glucagon on lipopolysaccharide (LPS)-induced airway hyperreactivity (AHR) and inflammation. The expression of glucagon receptor (GcgR), CREB, phospho-CREB, nitric oxide synthase (NOS)-3, pNOS-3 and cyclooxygenase (COX)-1 was evaluated by western blot, while prostaglandin E2 (PGE2) and tumour necrosis factor-α were quantified by enzyme-linked immunoassay and ELISA respectively. Glucagon partially inhibited carbachol-induced tracheal contraction in a mechanism clearly sensitive to des-His1-[Glu9]-glucagon amide, a GcgR antagonist. Remarkably, GcgR was more expressed in the lung and trachea with intact epithelium than in the epithelium-denuded trachea. In addition, the glucagon-mediated impairment of carbachol-induced contraction was prevented by either removing epithelial cells or blocking NOS (L-NAME), COX (indomethacin) or COX-1 (SC-560). In contrast, inhibitors of either heme oxygenase or COX-2 were inactive. Intranasal instillation of glucagon inhibited methacholine-induced airway obstruction by a mechanism sensitive to pretreatment with L-NAME, indomethacin and SC-560. Glucagon induced CREB and NOS-3 phosphorylation and increased PGE2 levels in the lung tissue without altering COX-1 expression. Glucagon also inhibited LPS-induced AHR and bronchoalveolar inflammation. These findings suggest that glucagon possesses airway-relaxing properties that are mediated by epithelium-NOS-3-NO- and COX-1-PGE2-dependent mechanisms.


Subject(s)
Bronchodilator Agents/pharmacology , Cholinergic Neurons/drug effects , Dinoprostone/metabolism , Glucagon/pharmacology , Muscle, Smooth/drug effects , Nitric Oxide/metabolism , Trachea/drug effects , Administration, Intranasal , Airway Resistance/drug effects , Animals , Asthma/drug therapy , Asthma/immunology , Asthma/metabolism , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/metabolism , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/therapeutic use , Cholinergic Neurons/immunology , Cholinergic Neurons/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Glucagon/administration & dosage , Glucagon/therapeutic use , In Vitro Techniques , Male , Mice, Inbred A , Muscle Relaxation/drug effects , Muscle, Smooth/immunology , Muscle, Smooth/innervation , Muscle, Smooth/metabolism , Nitric Oxide Synthase Type III/metabolism , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Trachea/immunology , Trachea/innervation , Trachea/metabolism
5.
PLoS One ; 8(8): e71759, 2013.
Article in English | MEDLINE | ID: mdl-23951240

ABSTRACT

Previous studies have described the antispasmodic effect of mangiferin, a natural glucoside xanthone (2-C-ß-Dgluco-pyranosyl-1,3,6,7-tetrahydroxyxanthone) that is present in mango trees and other plants, but its mechanism of action remains unknown. The aim of this study was to examine the potential contribution of the nitric oxide-cyclic GMP pathway to the antispasmodic effect of mangiferin on isolated tracheal rings preparations. The functional effect of mangiferin on allergic and non-allergic contraction of guinea pig tracheal rings was assessed in conventional organ baths. Cultured tracheal rings were exposed to mangiferin or vehicle, and nitric oxide synthase (NOS) 3 and cyclic GMP (cGMP) levels were quantified using western blotting and enzyme immunoassays, respectively. Mangiferin (0.1-10 µM) inhibited tracheal contractions induced by distinct stimuli, such as allergen, histamine, 5-hydroxytryptamine or carbachol, in a concentration-dependent manner. Mangiferin also caused marked relaxation of tracheal rings that were precontracted by carbachol, suggesting that it has both anti-contraction and relaxant properties that are prevented by removing the epithelium. The effect of mangiferin was inhibited by the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME) (100 µM), and the soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 µM), but not the adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (SQ22536) (100 µM). The antispasmodic effect of mangiferin was also sensitive to K⁺ channel blockers, such as tetraethylammonium (TEA), glibenclamide and apamin. Furthermore, mangiferin inhibited Ca²âº-induced contractions in K⁺ (60 mM)-depolarised tracheal rings preparations. In addition, mangiferin increased NOS3 protein levels and cGMP intracellular levels in cultured tracheal rings. Finally, mangiferin-induced increase in cGMP levels was abrogated by co-incubation with either ODQ or L-NAME. These data suggest that the antispasmodic effect of mangiferin is mediated by epithelium-nitric oxide- and cGMP-dependent mechanisms.


Subject(s)
Cyclic GMP/metabolism , Nitric Oxide/metabolism , Parasympatholytics/pharmacology , Signal Transduction/drug effects , Trachea/drug effects , Xanthones/pharmacology , Animals , Calcium/metabolism , Guanylate Cyclase/antagonists & inhibitors , Guanylate Cyclase/metabolism , Guinea Pigs , Male , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type III/metabolism , Potassium Channel Blockers/pharmacology , Trachea/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...