Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 23(23): 235502, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22595835

ABSTRACT

Semiconducting polymers have previously been used as the transduction material in x-ray dosimeters, but these devices have a rather low detection sensitivity because of the low x-ray attenuation efficiency of the organic active layer. Here, we demonstrate a way to overcome this limitation through the introduction of high density nanoparticles having a high atomic number (Z) to increase the x-ray attenuation. Specifically, bismuth oxide (Bi(2)O(3)) nanoparticles (Z = 83 for Bi) are added to a poly(triarylamine) (PTAA) semiconducting polymer in the active layer of an x-ray detector. Scanning electron microscopy (SEM) reveals that the Bi(2)O(3) nanoparticles are reasonably distributed in the PTAA active layer. The reverse bias dc current-voltage characteristics for PTAA-Bi(2)O(3) diodes (with indium tin oxide (ITO) and Al contacts) have similar leakage currents to ITO/PTAA/Al diodes. Upon irradiation with 17.5 keV x-ray beams, a PTAA device containing 60 wt% Bi(2)O(3) nanoparticles demonstrates a sensitivity increase of approximately 2.5 times compared to the plain PTAA sensor. These results indicate that the addition of high-Z nanoparticles improves the performance of the dosimeters by increasing the x-ray stopping power of the active volume of the diode. Because the Bi(2)O(3) has a high density, it can be used very efficiently, achieving a high weight fraction with a low volume fraction of nanoparticles. The mechanical flexibility of the polymer is not sacrificed when the inorganic nanoparticles are incorporated.


Subject(s)
Metal Nanoparticles/radiation effects , Metals, Heavy/radiation effects , Radiometry/instrumentation , Semiconductors , Equipment Design , Equipment Failure Analysis , Oxides/radiation effects , Radiation Dosage , Sensitivity and Specificity , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...