Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Sci ; 11(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39057968

ABSTRACT

Birds are known to be carriers of ticks infected by tick-borne pathogens, including bacteria. However, not many studies have been carried out on avian tissues to detect these agents. The aim of the present survey was to investigate, using PCR, the presence of Anaplasma phagocytophilum, Bartonella spp., Borrelia burgdorferi sensu lato, Chlamydia psittaci, Coxiella burnetii, Ehrlichia canis, Francisella tularensis, and Rickettsia spp. in the spleens collected from 300 wild birds of different orders and species from Central Italy. A total of 53 (17.67%) samples were PCR positive for at least one investigated pathogen. One (0.33%) bird was positive for Bartonella spp., five (1.67%) birds were positive for C. burnetii, eleven (3.67%) for B. burgdorferi s.l., and thirty-six (12%) for C. psittaci. No coinfection was detected. All samples were negative for A. phagocytophilum, E. canis, F. tularensis, and Rickettsia spp. The findings showed that wild birds may harbor different zoonotic tick-borne bacteria; therefore, they can contribute to the diffusion of these agents.

2.
Vet Sci ; 9(11)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36423080

ABSTRACT

The emergence and spread of antimicrobial resistance (AMR) is a global problem that requires a One Health approach. Despite several studies have reported the role of companion animals as reservoirs of AMR, limited information is available regarding the role of cats in the circulation of AMR. In this study, we evaluated the phenotypic and genotypic profile of 75 Escherichia coli isolated from rectal swabs and fecal samples of 75 stray cats (living in solitary or in a colony) sampled in Palermo (Sicily, Italy), to determine whether these animals may participate in the spread of AMR. Susceptibility to 8 antibiotics was tested using Minimum Inhibitory Concentration assays, while the presence of the common antibiotic resistance genes blaTEM, blaCTX-M, tet(A), and tet(B) was investigated by PCR. From the 75 E. coli isolates analyzed, 43% were resistant to at least one of the eight antibiotics tested, with 31% of the isolates resistant to ampicillin, 23% to cefotaxime, 21% to tetracycline, 20% to cefazolin, and 17% to amoxicillin/clavulanic acid. Most isolates harbored the blaTEM gene (29%), followed by blaCTX-M (23%), tet(A) (21%), and tet(B) (20%). Our results confirm the fecal carriage of antibiotic-resistant E. coli and clinically relevant resistance genes in stray cats. This study highlights the potential role of stray cats in the spread of AMR in urban environments, emphasising the need to better understand their role in AMR circulation when planning strategies to combat it.

3.
Antibiotics (Basel) ; 11(7)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35884106

ABSTRACT

Bacteria of the genus Enterococcus are opportunistic pathogens, part of the normal intestinal microflora of animals, able to acquire and transfer antimicrobial resistance genes. The aim of this study was to evaluate the possible role of wild avifauna as a source of antimicrobial-resistant enterococci. To assess this purpose, 103 Enterococcus spp. strains were isolated from the feces of wild birds of different species; they were tested for antimicrobial resistance against 21 molecules, vancomycin resistance, and high-level aminoglycosides resistance (HLAR). Furthermore, genes responsible for vancomycin, tetracycline, and HLAR were searched. E. faecium was the most frequently detected species (60.20% of isolates), followed by E. faecalis (34.95% of isolates). Overall, 99.02% of the isolated enterococci were classified as multidrug-resistant, with 19.41% extensively drug-resistant, and 2.91% possible pan drug-resistant strains. Most of the isolates were susceptible to amoxicillin/clavulanic acid (77.67%) and ampicillin (75.73%), with only 5.83% of isolates showing an ampicillin MIC ≥ 64 mg/L. HLAR was detected in 35.92% of isolates, mainly associated with the genes ant(6)-Ia and aac(6')-Ie-aph(2″)-Ia. Few strains (4.85%) were resistant to vancomycin, and the genes vanA and vanB were not detected. A percentage of 54.37% of isolates showed resistance to tetracycline; tet(M) was the most frequently detected gene in these strains. Wild birds may contribute to the spreading of antimicrobial-resistant enterococci, which can affect other animals and humans. Constant monitoring is essential to face up to the evolving antimicrobial resistance issue, and monitoring programs should include wild avifauna, too.

SELECTION OF CITATIONS
SEARCH DETAIL
...