Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 9(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35735475

ABSTRACT

The ability to regenerate damaged cartilage capable of long-term performance in an active joint remains an unmet clinical challenge in regenerative medicine. Biomimetic scaffold biomaterials have shown some potential to direct effective cartilage-like formation and repair, albeit with limited clinical translation. In this context, type II collagen (CII)-containing scaffolds have been recently developed by our research group and have demonstrated significant chondrogenic capacity using murine cells. However, the ability of these CII-containing scaffolds to support improved longer-lasting cartilage repair with reduced calcified cartilage formation still needs to be assessed in order to elucidate their potential therapeutic benefit to patients. To this end, CII-containing scaffolds in presence or absence of hyaluronic acid (HyA) within a type I collagen (CI) network were manufactured and cultured with human mesenchymal stem cells (MSCs) in vitro under chondrogenic conditions for 28 days. Consistent with our previous study in rat cells, the results revealed enhanced cartilage-like formation in the biomimetic scaffolds. In addition, while the variable chondrogenic abilities of human MSCs isolated from different donors were highlighted, protein expression analysis illustrated consistent responses in terms of the deposition of key cartilage extracellular matrix (ECM) components. Specifically, CI/II-HyA scaffolds directed the greatest cell-mediated synthesis and accumulation in the matrices of type II collagen (a principal cartilage ECM component), and reduced deposition of type X collagen (a key protein associated with hypertrophic cartilage formation). Taken together, these results provide further evidence of the capability of these CI/II-HyA scaffolds to direct enhanced and longer-lasting cartilage repair in patients with reduced hypertrophic cartilage formation.

2.
Biomater Sci ; 10(4): 970-983, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35018931

ABSTRACT

A major challenge in cartilage tissue engineering (TE) is the development of instructive and biomimetic scaffolds capable of driving effective mesenchymal stem cell (MSC) chondrogenic differentiation and robust de novo matrix formation. Type I collagen-based scaffolds are one of the most commonly selected materials given collagen's intrinsic ability to act as an instructive and active biomaterial. However, the chondrogenic potential of these scaffolds does not offer significant improvement over traditional treatments. We propose that taking a biomimetic approach to scaffold development might lead to an improved outcome for enhanced cartilage repair. Therefore, this study aimed to develop innovative type II collagen (CII)-containing scaffolds for enhanced cartilage repair, by incorporating CII and/or hyaluronic acid (HyA) into a type I collagen (CI) framework. Moreover, focus was placed on understanding the potential synergistic effects played by CII in combination with HyA, in terms of MSC chondrogenesis and cartilage-like formation, when both molecules are incorporated into scaffold biomaterials. The newly developed CII-containing scaffold exhibited a highly porous interconnected structure with 99% porosity and similar mechanical properties to previously optimised collagen-based scaffolds. Although all scaffold variants sustained early cartilaginous matrix deposition, the CII-containing scaffolds in the presence of HyA performed best, offering enhanced deposition and distribution of sulphated glycosaminoglycans (sGAG) in vitro by day 28. Taken together, the combination of CII and HyA resulted in the development of a biomimetic scaffold with improved chondrogenic benefits. These simple "off-the-shelf" implants hold great promise to direct enhanced tissue regeneration for the treatment of focal cartilage defects.


Subject(s)
Chondrogenesis , Mesenchymal Stem Cells , Cartilage , Cell Differentiation , Collagen Type II , Porosity , Tissue Engineering , Tissue Scaffolds
3.
Carbohydr Polym ; 199: 593-602, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30143167

ABSTRACT

The fabrication of porous 3D printed chitosan (CH) scaffolds for skin tissue regeneration and their behavior in terms of biocompatibility, cytocompatibility and toxicity toward human fibroblasts (Nhdf) and keratinocytes (HaCaT), are presented and discussed. 3D cell cultures achieved after 20 and 35 days of incubation showed significant in vitro qualitative and quantitative cell growth as measured by neutral red staining and MTT assays and confirmed by scanning electron microphotographs. The best cell growth was obtained after 35 days on 3D scaffolds when the Nhdf and HaCaT cells, seeded together, filled the pores in the scaffolds. An early skin-like layer consisting of a mass of fibroblast and keratinocyte cells growing together was observed. The tests of 3D printed scaffolds in wound healing carried out on streptozotocin-induced diabetic rats demonstrate that 3D printed scaffolds improve the quality of the restored tissue with respect to both commercial patch and spontaneous healing.


Subject(s)
Biocompatible Materials/therapeutic use , Chitosan/therapeutic use , Diabetes Mellitus, Experimental/metabolism , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Wound Healing/physiology , Animals , Bandages , Biocompatible Materials/chemistry , Biocompatible Materials/toxicity , Cell Line , Cell Survival/drug effects , Chitosan/chemistry , Chitosan/toxicity , Elastic Modulus , Female , Fibroblasts/drug effects , Humans , Keratinocytes/drug effects , Porosity , Rats, Wistar , Skin/drug effects , Wound Closure Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...