Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 207(4429): 403-7, 1980 Jan 25.
Article in English | MEDLINE | ID: mdl-17833548

ABSTRACT

The Ames Research Center Pioneer 11 plasma analyzer experiment provided measurements of the solar wind interaction with Saturn and the character of the plasma environment within Saturn's magnetosphere. It is shown that Saturn has a detached bow shock wave and magnetopause quite similar to those at Earth and Jupiter. The scale size of the interaction region for Saturn is roughly one-third that at Jupiter, but Saturn's magnetosphere is equally responsive to changes in the solar wind dynamic pressure. Saturn's outer magnetosphere is inflated, as evidenced by the observation of large fluxes of corotating plasma. It is postulated that Saturn's magnetosphere may undergo a large expansion when the solar wind pressure is greatly diminished by the presence of Jupiter's extended magnetospheric tail when the two planets are approximately aligned along the same solar radial vector.

2.
Science ; 205(4401): 116-9, 1979 Jul 06.
Article in English | MEDLINE | ID: mdl-17778923

ABSTRACT

Additional plasma measurements in the vicinity of Venus are presented which show that (i) there are three distinct plasma electron populations-solar wind electrons, ionosheath electrons, and nightside ionosphere electrons; (ii) the plasma ion flow pattern in the ionosheath is consistent with deflected flow around a blunt obstacle; (iii) the plasma ion flow velocities near the downstream wake may, at times, be consistent with the deflection of plasma into the tail, closing the solar wind cavity downstream from Venus at a relatively close distance (within 5 Venus radii) to the planet; (iv) there is a separation between the inner boundary of the downstream ionosheath and the upper boundary of the nightside ionosphere; and (v) during the first 4.5 months in orbit the measured solar wind plasma speed continued to vary, showing a number of high-speed, but generally nonrecurrent, streams.

3.
Science ; 203(4382): 750-2, 1979 Feb 23.
Article in English | MEDLINE | ID: mdl-17832984

ABSTRACT

Initial results of observations of the solar wind interaction with Venus indicate that Venus has a well-defined, strong, standing bow shock wave. Downstream from the shock, an ionosheath is observed in which the compressed and heated postshock plasma evidently interacts directly with the Venus ionosphere. Plasma ion velocity deflections observed within the ionosheath are consistent with flow around the blunt shape of the ionopause. The ionopause boundary is observed and defined by this experiment as the location where the ionosheath ion flow is first excluded. The positions of the bow shock and ionopause are variable and appear to respond to changes in the external solar wind pressure. Near the terminator the bow shock was observed at altitudes of approximately 4600 to approximately 12,000 kilometers. The ionopause altitutde ranged fromn as low as approximately 450 to approximately 1950 kilometers. Within the Venus ionosphere low-energy ions (energy per untit charge < 30 volts) were detected and have been tentatively idtentified as nonflowing ionospheric ions incident from a direction along the spacecraft velocity vector.

4.
Science ; 188(4187): 448-51, 1975 May 02.
Article in English | MEDLINE | ID: mdl-17734358

ABSTRACT

Pioneer 11 observations of the interaction of Jupiter's magnetosphere with the distant solar wind have confirmed the earlier Pioneer 10 observations of the great size and extreme variability of the outer magnetosphere. The nature of the plasma transitions across Jupiter's bow shock and magnetopause as observed on Pioneer 10 have also been confirmed on Pioneer 11. However, the northward direction of the Pioneer 11 outbound trajectory and the distance of the final magnetopause crossing (80 Jupiter radii) now suggest that Jupiter's magnetosphere is extremely broad with a half-thickness (normal to the ecliptic plane in the noon meridian) which is comparable to or greater than the sunward distance to the nose.

5.
Science ; 183(4122): 303-5, 1974 Jan 25.
Article in English | MEDLINE | ID: mdl-17821087

ABSTRACT

Preliminary results from the Ames Research Center plasma analyzer experiment for the Pioneer 10 Jupiter encounter indicate that Jupiter has a detached bow shock and magnetopause similar to the case at Earth but much larger in spatial extent. In contrast to Earth, Jupiter's outer magnetosphere appears to be highly inflated by thermal plasma and therefore highly responsive in size to changes in solar wind dynamic pressure.

SELECTION OF CITATIONS
SEARCH DETAIL
...