Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 14275, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29079832

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder of which skeletal muscle atrophy is a common feature, and multiple lines of evidence support a muscle-based pathophysiology in HD mouse models. Inhibition of myostatin signaling increases muscle mass, and therapeutic approaches based on this are in clinical development. We have used a soluble ActRIIB decoy receptor (ACVR2B/Fc) to test the effects of myostatin/activin A inhibition in the R6/2 mouse model of HD. Weekly administration from 5 to 11 weeks of age prevented body weight loss, skeletal muscle atrophy, muscle weakness, contractile abnormalities, the loss of functional motor units in EDL muscles and delayed end-stage disease. Inhibition of myostatin/activin A signaling activated transcriptional profiles to increase muscle mass in wild type and R6/2 mice but did little to modulate the extensive Huntington's disease-associated transcriptional dysregulation, consistent with treatment having little impact on HTT aggregation levels. Modalities that inhibit myostatin signaling are currently in clinical trials for a variety of indications, the outcomes of which will present the opportunity to assess the potential benefits of targeting this pathway in HD patients.


Subject(s)
Huntington Disease/pathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Myostatin/antagonists & inhibitors , Activin Receptors, Type II/pharmacology , Animals , Body Weight/drug effects , Hand Strength/physiology , Huntingtin Protein/chemistry , Huntington Disease/complications , Huntington Disease/physiopathology , Male , Mice , Muscle, Skeletal/pathology , Muscular Atrophy/complications , Muscular Atrophy/prevention & control , Protein Aggregates/drug effects
2.
PLoS One ; 9(9): e108961, 2014.
Article in English | MEDLINE | ID: mdl-25268775

ABSTRACT

Huntington's disease (HD) is neurodegenerative disorder for which the mutation results in an extra-long tract of glutamines that causes the huntingtin protein to aggregate. It is characterized by neurological symptoms and brain pathology that is associated with nuclear and cytoplasmic aggregates and with transcriptional deregulation. Despite the fact that HD has been recognized principally as a neurological disease, there are multiple epidemiological studies showing that HD patients exhibit a high rate of cardiovascular events leading to heart failure. To unravel the mechanistic basis of cardiac dysfunction in HD, we employed a wide range of molecular techniques using the well-established genetic R6/2 mouse model that develop a considerable degree of the cardiac atrophy at end stage disease. We found that chronic treatment with isoproterenol, a potent beta-adrenoreceptor agonist, did not change the overall gross morphology of the HD murine hearts. However, there was a partial response to the beta-adrenergenic stimulation by the further re-expression of foetal genes. In addition we have profiled the expression level of Hdacs in the R6/2 murine hearts and found that the isoproterenol stimulation of Hdac expression was partially blocked. For the first time we established the Hdac transcriptional profile under hypertrophic conditions and found 10 out of 18 Hdacs to be markedly deregulated. Therefore, we conclude that R6/2 murine hearts are not able to respond to the chronic isoproterenol treatment to the same degree as wild type hearts and some of the hypertrophic signals are likely attenuated in the symptomatic HD animals.


Subject(s)
Cardiomyopathies/pathology , Huntington Disease/pathology , Myocardium/pathology , Adrenergic beta-Antagonists/pharmacology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cardiomyopathies/etiology , Collagen Type VI/metabolism , Disease Models, Animal , Down-Regulation , Female , Heart/drug effects , Histone Deacetylases/metabolism , Huntington Disease/complications , Hypertrophy , Isoproterenol/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA
3.
PLoS Genet ; 10(8): e1004550, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25101683

ABSTRACT

Cardiac remodelling and contractile dysfunction occur during both acute and chronic disease processes including the accumulation of insoluble aggregates of misfolded amyloid proteins that are typical features of Alzheimer's, Parkinson's and Huntington's disease (HD). While HD has been described mainly as a neurological disease, multiple epidemiological studies have shown that HD patients exhibit a high incidence of cardiovascular events leading to heart failure, and that this is the second highest cause of death. Given that huntingtin is ubiquitously expressed, cardiomyocytes may be at risk of an HD-related dysfunction. In mice, the forced expression of an expanded polyQ repeat under the control of a cardiac specific promoter led to severe heart failure followed by reduced lifespan. However the mechanism leading to cardiac dysfunction in the clinical and pre-clinical HD settings remains unknown. To unravel this mechanism, we employed the R6/2 transgenic and HdhQ150 knock-in mouse models of HD. We found that pre-symptomatic animals developed connexin-43 relocation and a significant deregulation of hypertrophic markers and Bdnf transcripts. In the symptomatic animals, pronounced functional changes were visualised by cardiac MRI revealing a contractile dysfunction, which might be a part of dilatated cardiomyopathy (DCM). This was accompanied by the re-expression of foetal genes, apoptotic cardiomyocyte loss and a moderate degree of interstitial fibrosis. To our surprise, we could identify neither mutant HTT aggregates in cardiac tissue nor a HD-specific transcriptional dysregulation, even at the end stage of disease. We postulate that the HD-related cardiomyopathy is caused by altered central autonomic pathways although the pathogenic effects of mutant HTT acting intrinsically in the heart may also be a contributing factor.


Subject(s)
Cardiomyopathy, Dilated/genetics , Huntington Disease/genetics , Myocardial Contraction/genetics , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Animals , Cardiomyopathy, Dilated/pathology , Connexin 43/genetics , Disease Models, Animal , Heart Failure/genetics , Heart Failure/pathology , Humans , Huntingtin Protein , Huntington Disease/physiopathology , Mice , Nerve Tissue Proteins/biosynthesis , Nuclear Proteins/biosynthesis , Ventricular Remodeling
4.
PLoS Biol ; 11(11): e1001717, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24302884

ABSTRACT

Histone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine-rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntington's disease (HD), a protein-folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion in the huntingtin protein. We found that HDAC4 associates with huntingtin in a polyglutamine-length-dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels, and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor coordination, neurological phenotypes, and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for the cytoplasmic aggregation process in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation, which may be amenable to small-molecule therapeutics.


Subject(s)
Histone Deacetylases/genetics , Huntington Disease/enzymology , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cerebral Cortex/enzymology , Cerebral Cortex/pathology , Epigenesis, Genetic , Female , Gene Knockdown Techniques , Histone Deacetylases/metabolism , Huntingtin Protein , Huntington Disease/physiopathology , Huntington Disease/therapy , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Neurons/physiology , Phenotype , Rotarod Performance Test , Synaptic Transmission , Transcription, Genetic
5.
PLoS One ; 8(11): e80849, 2013.
Article in English | MEDLINE | ID: mdl-24278330

ABSTRACT

Reversible protein acetylation provides a central mechanism for controlling gene expression and cellular signaling events. It is governed by the antagonistic commitment of two enzymes families: the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). HDAC4, like its class IIa counterparts, is a potent transcriptional repressor through interactions with tissue specific transcription factors via its N-terminal domain. Whilst the lysine deacetylase activity of the class IIa HDACs is much less potent than that of the class I enzymes, HDAC4 has been reported to influence protein deacetylation through its interaction with HDAC3. To investigate the influence of HDAC4 on protein acetylation we employed the immunoaffinity-based AcetylScan proteomic method. We identified many proteins known to be modified by acetylation, but found that the absence of HDAC4 had no effect on the acetylation profile of the murine neonate brain. This is consistent with the biochemical data suggesting that HDAC4 may not function as a lysine deacetylase, but these in vivo data do not support the previous report showing that the enzymatic activity of HDAC3 might be modified by its interaction with HDAC4. To complement this work, we used Affymetrix arrays to investigate the effect of HDAC4 knock-out on the transcriptional profile of the postnatal murine brain. There was no effect on global transcription, consistent with the absence of a differential histone acetylation profile. Validation of the array data by Taq-man qPCR indicated that only protamine 1 and Igfbp6 mRNA levels were increased by more than one-fold and only Calml4 was decreased. The lack of a major effect on the transcriptional profile is consistent with the cytoplasmic location of HDAC4 in the P3 murine brain.


Subject(s)
Brain/enzymology , Histone Deacetylases/metabolism , Acetylation , Animals , Animals, Newborn , Cytoplasm/enzymology , Down-Regulation/genetics , Gene Expression Profiling , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Protein Transport , Reproducibility of Results , Transcription, Genetic , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...