Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(10): 3076-3081, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35230121

ABSTRACT

A polymer electrolyte brush is a reasonable platform to confine water molecules within a nanoscopic area to study their role in the function of interacting media because of their adjustable nanospace and charge by changing the in-plane density and side chains of the brush. Here, we demonstrate how the in-plane spacing of cationic polymer brush chains, poly[2-(methacryloyloxy)ethyltrimethylammonium chloride] (PMTAC), affects the hydrogen bond configuration of incorporated water using soft X-ray emission spectroscopy. At the critical in-plane density σ = 0.30 chains/nm2 of PMTAC, tetrahedrally coordinated water molecules started to melt into distorted or broken hydrogen-bonded configurations. Considering the charge on the quaternary ammonium cations, the electric field required to form a tetrahedrally coordinated hydrogen-bonded configuration was estimated as ∼500 kV cm-1 and is effective up to ∼1 nm from the surface of the polymer chain. These findings are useful for designing specific interface properties and the resultant surface function of polyelectrolyte-based materials.

2.
Langmuir ; 36(23): 6494-6501, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32393028

ABSTRACT

A highly effective aqueous lubrication strategy employing electrostatic assembly of a negatively charged ultrahigh molecular weight natural polysaccharide named "sacran" and a positively charged poly[2-(methacryloyloxy)ethyltrimethylammonium chloride] (PMTAC) brush was investigated. The PMTAC brush was compressed through the adsorption of sacran to produce the layered structure of a PMTAC brush/sacran hybrid bottom layer and a poorly hydrated sacran top layer. The dynamic friction coefficients of the PMTAC brush were drastically reduced in salt-free sacran aqueous solutions, and the lubrication mode transition from the brush-lubrication regime to hydrodynamic lubrication was promoted. The electrostatic assembly was inhibited by the addition of NaCl into the lubricant solutions, leading to the loss of the lubrication effect. The hydrodynamic lubrication would be encouraged by the local viscosity enhancement at the friction boundary due to the poorly hydrated and highly viscous PMTAC brush/sacran hybrid film produced by the spontaneous electrostatic assembly.

3.
Langmuir ; 35(5): 1583-1589, 2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30441903

ABSTRACT

The ion-specific hydration states of zwitterionic poly(3-( N-2-methacryloyloxyethyl- N, N-dimethyl)ammonatopropanesulfonate) (PMAPS) brushes in various aqueous solutions were investigated by neutron reflectivity (NR) and atomic force microscopy (AFM). The asymmetric hydration state of the PMAPS brushes was verified from the NR scattering-length density profiles, while the variation in their swollen thickness was complementary as determined from AFM topographic images. PMAPS brushes got thicker in any salt solutions, while the extent of swelling and the dimensions of swollen chain structure were dependent on the ion species and salt concentration in the solutions. Anion specificity was clearly observed, whereas cations exhibited weaker modulation in ion-specific hydration states. The anion specificity could be ascribed to ion-specific interactions between the quaternary ammonium cation in sulfobetaine and the anions. The weak cation specificity was attributed to the intrinsically weak cohesive interactions between the weakly hydrated sulfonate anion in sulfobetaine and the strongly hydrated cations. The ion-specific hydration of PMAPS brushes was largely consistent with the ion-specific aggregation state of the PMAPS chains in aqueous solutions.

4.
Langmuir ; 33(34): 8404-8412, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28737401

ABSTRACT

Effect of alkyl chain spacer length between the charged groups (CSL) in zwitterionic poly(sulfobetaine) (PSB) brushes on the hydration state was investigated. PSB brushes with ethyl (PMAES), propyl (PMAPS), or butyl (PMABS) CSL were prepared by surface-initiated atom transfer radical polymerization on silicon wafers. Hydration states of the PSB brushes in aqueous solutions and/or humid vapor were investigated by contact angle measurement, infrared spectroscopy, AFM observation, and neutron reflectivity. The PSB brushes are swollen in humid air and deionized water due to the hydration of the charged groups leading to the reduction of hydrated PSB brushes/water interfacial free energy. The hydrated PSB brushes exhibit clear interface with low interfacial roughness due to networking of the PSB brush chains through association of the SBs. The hydrated PSB brushes produce diffusive swollen layer in the presence of NaCl because of the charge screening followed by SB dissociation by the bound ions. The ionic strength sensitivity in the hydration got more significant with increasing the CSL in SBs because of the augmentation in partial charge by charged group separation.

5.
Langmuir ; 33(16): 3954-3959, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28359152

ABSTRACT

Water existing in the vicinity of polyelectrolytes exhibits unique structural properties, which demonstrate key roles in chemistry, biology, and geoscience. In this study, X-ray absorption and emission spectroscopy was employed to observe the local hydrogen-bonding structure of water confined in a charged polyelectrolyte brush. Even at room temperature, a majority of the water molecules confined in the polyelectrolyte brush exhibited one type of hydrogen-bonding configuration: a slightly distorted, albeit ordered, configuration. The findings from this study provide new insight in terms of the correlation between the function and local structure of water at the interface of biological materials under physiological conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...