Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 18(10): e1010901, 2022 10.
Article in English | MEDLINE | ID: mdl-36265000

ABSTRACT

Fundamental processes that govern the lytic cycle of the intracellular parasite Toxoplasma gondii are regulated by several signalling pathways. However, how these pathways are connected remains largely unknown. Here, we compare the phospho-signalling networks during Toxoplasma egress from its host cell by artificially raising cGMP or calcium levels. We show that both egress inducers trigger indistinguishable signalling responses and provide evidence for a positive feedback loop linking calcium and cyclic nucleotide signalling. Using WT and conditional knockout parasites of the non-essential calcium-dependent protein kinase 3 (CDPK3), which display a delay in calcium inonophore-mediated egress, we explore changes in phosphorylation and lipid signalling in sub-minute timecourses after inducing Ca2+ release. These studies indicate that cAMP and lipid metabolism are central to the feedback loop, which is partly dependent on CDPK3 and allows the parasite to respond faster to inducers of egress. Biochemical analysis of 4 phosphodiesterases (PDEs) identified in our phosphoproteomes establishes PDE2 as a cAMP-specific PDE which regulates Ca2+ induced egress in a CDPK3-independent manner. The other PDEs display dual hydrolytic activity and play no role in Ca2+ induced egress. In summary, we uncover a positive feedback loop that enhances signalling during egress, thereby linking several signalling pathways.


Subject(s)
Toxoplasma , Toxoplasma/metabolism , Calcium/metabolism , Nucleotides, Cyclic/metabolism , Feedback , Lipids
2.
PLoS Comput Biol ; 18(5): e1010110, 2022 05.
Article in English | MEDLINE | ID: mdl-35560139

ABSTRACT

Phosphoproteomic experiments routinely observe thousands of phosphorylation sites. To understand the intracellular signaling processes that generated this data, one or more causal protein kinases must be assigned to each phosphosite. However, limited knowledge of kinase specificity typically restricts assignments to a small subset of a kinome. Starting from a statistical model of a high-throughput, in vitro kinase-substrate assay, I have developed an approach to high-coverage, multi-label kinase-substrate assignment called IV-KAPhE ("In vivo-Kinase Assignment for Phosphorylation Evidence"). Tested on human data, IV-KAPhE outperforms other methods of similar scope. Such computational methods generally predict a densely connected kinase-substrate network, with most sites targeted by multiple kinases, pointing either to unaccounted-for biochemical constraints or significant cross-talk and signaling redundancy. I show that such predictions can potentially identify biased kinase-site misannotations within families of closely related kinase isozymes and they provide a robust basis for kinase activity analysis.


Subject(s)
Protein Kinases , Signal Transduction , Humans , Models, Statistical , Phosphoproteins/metabolism , Phosphorylation , Protein Kinases/metabolism , Substrate Specificity
3.
Commun Biol ; 5(1): 385, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35444215

ABSTRACT

The interaction between a cell and its environment shapes fundamental intracellular processes such as cellular metabolism. In most cases growth rate is treated as a proximal metric for understanding the cellular metabolic status. However, changes in growth rate might not reflect metabolic variations in individuals responding to environmental fluctuations. Here we use single-cell microfluidics-microscopy combined with transcriptomics, proteomics and mathematical modelling to quantify the accumulation of glucose within Escherichia coli cells. In contrast to the current consensus, we reveal that environmental conditions which are comparatively unfavourable for growth, where both nutrients and salinity are depleted, increase glucose accumulation rates in individual bacteria and population subsets. We find that these changes in metabolic function are underpinned by variations at the translational and posttranslational level but not at the transcriptional level and are not dictated by changes in cell size. The metabolic response-characteristics identified greatly advance our fundamental understanding of the interactions between bacteria and their environment and have important ramifications when investigating cellular processes where salinity plays an important role.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Bacteria/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Glucose/metabolism , Humans , Nutrients/metabolism
4.
Cell Biosci ; 11(1): 144, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34301309

ABSTRACT

BACKGROUND: Beta cell identity changes occur in the islets of donors with diabetes, but the molecular basis of this remains unclear. Protecting residual functional beta cells from cell identity changes may be beneficial for patients with diabetes. RESULTS: A somatostatin-positive cell population was induced in stressed clonal human EndoC-ßH1 beta cells and was isolated using FACS. A transcriptomic characterisation of somatostatin-positive cells was then carried out. Gain of somatostatin-positivity was associated with marked dysregulation of the non-coding genome. Very few coding genes were differentially expressed. Potential candidate effector genes were assessed by targeted gene knockdown. Targeted knockdown of the HNRNPD gene induced the emergence of a somatostatin-positive cell population in clonal EndoC-ßH1 beta cells comparable with that we have previously reported in stressed cells. CONCLUSIONS: We report here a role for the HNRNPD gene in determination of beta cell identity in response to cellular stress. These findings widen our understanding of the role of RNA binding proteins and RNA biology in determining cell identity and may be important for protecting remaining beta cell reserve in diabetes.

5.
mBio ; 12(4): e0090921, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34281389

ABSTRACT

Persister and viable but non-culturable (VBNC) cells are two clonal subpopulations that can survive multidrug exposure via a plethora of putative molecular mechanisms. Here, we combine microfluidics, time-lapse microscopy, and a plasmid-encoded fluorescent pH reporter to measure the dynamics of the intracellular pH of individual persister, VBNC, and susceptible Escherichia coli cells in response to ampicillin treatment. We found that even before antibiotic exposure, persisters have a lower intracellular pH than those of VBNC and susceptible cells. We then investigated the molecular mechanisms underlying the observed differential pH regulation in persister E. coli cells and found that this is linked to the activity of the enzyme tryptophanase, which is encoded by tnaA. In fact, in a ΔtnaA strain, we found no difference in intracellular pH between persister, VBNC, and susceptible E. coli cells. Whole-genome transcriptomic analysis revealed that, besides downregulating tryptophan metabolism, the ΔtnaA strain downregulated key pH homeostasis pathways, including the response to pH, oxidation reduction, and several carboxylic acid catabolism processes, compared to levels of expression in the parental strain. Our study sheds light on pH homeostasis, proving that the regulation of intracellular pH is not homogeneous within a clonal population, with a subset of cells displaying a differential pH regulation to perform dedicated functions, including survival after antibiotic treatment. IMPORTANCE Persister and VBNC cells can phenotypically survive environmental stressors, such as antibiotic treatment, limitation of nutrients, and acid stress, and have been linked to chronic infections and antimicrobial resistance. It has recently been suggested that pH regulation might play a role in an organism's phenotypic survival to antibiotics; however, this hypothesis remains to be tested. Here, we demonstrate that even before antibiotic treatment, cells that will become persisters have a more acidic intracellular pH than clonal cells that will be either susceptible or VBNC upon antibiotic treatment. Moreover, after antibiotic treatment, persisters become more alkaline than VBNC and susceptible E. coli cells. This newly found phenotypic feature is remarkable because it distinguishes persister and VBNC cells that have often been thought to display the same dormant phenotype. We then show that this differential pH regulation is abolished in the absence of the enzyme tryptophanase via a major remodeling of bacterial metabolism and pH homeostasis. These new whole-genome transcriptome data should be taken into account when modeling bacterial metabolism at the crucial transition from exponential to stationary phase. Overall, our findings indicate that the manipulation of the intracellular pH represents a bacterial strategy for surviving antibiotic treatment. In turn, this suggests a strategy for developing persister-targeting antibiotics by interfering with cellular components, such as tryptophanase, that play a major role in pH homeostasis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/chemistry , Escherichia coli/drug effects , Ampicillin/pharmacology , Cytoplasm/chemistry , Cytoplasm/drug effects , Escherichia coli/metabolism , Homeostasis , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Microbial Viability , Microfluidics , Microscopy, Fluorescence , Time-Lapse Imaging , Tryptophanase/metabolism
6.
mBio ; 11(4)2020 08 18.
Article in English | MEDLINE | ID: mdl-32817103

ABSTRACT

Red blood cell (RBC) invasion by Plasmodium merozoites requires multiple steps that are regulated by signaling pathways. Exposure of P. falciparum merozoites to the physiological signal of low K+, as found in blood plasma, leads to a rise in cytosolic Ca2+, which mediates microneme secretion, motility, and invasion. We have used global phosphoproteomic analysis of merozoites to identify signaling pathways that are activated during invasion. Using quantitative phosphoproteomics, we found 394 protein phosphorylation site changes in merozoites subjected to different ionic environments (high K+/low K+), 143 of which were Ca2+ dependent. These included a number of signaling proteins such as catalytic and regulatory subunits of protein kinase A (PfPKAc and PfPKAr) and calcium-dependent protein kinase 1 (PfCDPK1). Proteins of the 14-3-3 family interact with phosphorylated target proteins to assemble signaling complexes. Here, using coimmunoprecipitation and gel filtration chromatography, we demonstrate that Pf14-3-3I binds phosphorylated PfPKAr and PfCDPK1 to mediate the assembly of a multiprotein complex in P. falciparum merozoites. A phospho-peptide, P1, based on the Ca2+-dependent phosphosites of PKAr, binds Pf14-3-3I and disrupts assembly of the Pf14-3-3I-mediated multiprotein complex. Disruption of the multiprotein complex with P1 inhibits microneme secretion and RBC invasion. This study thus identifies a novel signaling complex that plays a key role in merozoite invasion of RBCs. Disruption of this signaling complex could serve as a novel approach to inhibit blood-stage growth of malaria parasites.IMPORTANCE Invasion of red blood cells (RBCs) by Plasmodium falciparum merozoites is a complex process that is regulated by intricate signaling pathways. Here, we used phosphoproteomic profiling to identify the key proteins involved in signaling events during invasion. We found changes in the phosphorylation of various merozoite proteins, including multiple kinases previously implicated in the process of invasion. We also found that a phosphorylation-dependent multiprotein complex including signaling kinases assembles during the process of invasion. Disruption of this multiprotein complex impairs merozoite invasion of RBCs, providing a novel approach for the development of inhibitors to block the growth of blood-stage malaria parasites.


Subject(s)
14-3-3 Proteins/metabolism , Erythrocytes/parasitology , Plasmodium falciparum/physiology , Protozoan Proteins/metabolism , Signal Transduction , 14-3-3 Proteins/genetics , Humans , Merozoites/physiology , Phosphorylation , Plasmodium falciparum/genetics , Proteomics , Protozoan Proteins/genetics
7.
Cell Syst ; 10(5): 384-396.e9, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32437683

ABSTRACT

Complex networks of regulatory relationships between protein kinases comprise a major component of intracellular signaling. Although many kinase-kinase regulatory relationships have been described in detail, these tend to be limited to well-studied kinases whereas the majority of possible relationships remains unexplored. Here, we implement a data-driven, supervised machine learning method to predict human kinase-kinase regulatory relationships and whether they have activating or inhibiting effects. We incorporate high-throughput data, kinase specificity profiles, and structural information to produce our predictions. The results successfully recapitulate previously annotated regulatory relationships and can reconstruct known signaling pathways from the ground up. The full network of predictions is relatively sparse, with the vast majority of relationships assigned low probabilities. However, it nevertheless suggests denser modes of inter-kinase regulation than normally considered in intracellular signaling research. A record of this paper's transparent peer review process is included in the Supplemental Information.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Protein Interaction Mapping/methods , Protein Kinases/metabolism , Computational Biology/methods , Gene Regulatory Networks , Humans , Intracellular Signaling Peptides and Proteins/physiology , Phosphorylation , Protein Kinases/physiology , Signal Transduction/physiology , Substrate Specificity , Supervised Machine Learning
8.
Essays Biochem ; 62(4): 525-534, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30072490

ABSTRACT

Cascades of phosphorylation between protein kinases comprise a core mechanism in the integration and propagation of intracellular signals. Although we have accumulated a wealth of knowledge around some such pathways, this is subject to study biases and much remains to be uncovered. Phosphoproteomics, the identification and quantification of phosphorylated proteins on a proteomic scale, provides a high-throughput means of interrogating the state of intracellular phosphorylation, both at the pathway level and at the whole-cell level. In this review, we discuss methods for using human quantitative phosphoproteomic data to reconstruct the underlying signalling networks that generated it. We address several challenges imposed by the data on such analyses and we consider promising advances towards reconstructing unbiased, kinome-scale signalling networks.


Subject(s)
Phosphoproteins/metabolism , Proteomics , Signal Transduction , Systems Biology , Humans , Phosphorylation , Protein Kinases/metabolism
9.
Cell Rep ; 21(7): 2017-2029, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29141230

ABSTRACT

The transmission of malaria parasites to mosquitoes relies on the rapid induction of sexual reproduction upon their ingestion into a blood meal. Haploid female and male gametocytes become activated and emerge from their host cells, and the males enter the cell cycle to produce eight microgametes. The synchronized nature of gametogenesis allowed us to investigate phosphorylation signaling during its first minute in Plasmodium berghei via a high-resolution time course of the phosphoproteome. This revealed an unexpectedly broad response, with proteins related to distinct cell cycle events undergoing simultaneous phosphoregulation. We implicate several protein kinases in the process, and we validate our analyses on the plant-like calcium-dependent protein kinase 4 (CDPK4) and a homolog of serine/arginine-rich protein kinases (SRPK1). Mutants in these kinases displayed distinct phosphoproteomic disruptions, consistent with differences in their phenotypes. The results reveal the central role of protein phosphorylation in the atypical cell cycle regulation of a divergent eukaryote.


Subject(s)
Cell Cycle , Gametogenesis , Plasmodium berghei/growth & development , Protein Processing, Post-Translational , Protozoan Proteins/metabolism , Animals , Female , Life Cycle Stages , Male , Mice , Phosphorylation , Plasmodium berghei/metabolism , Plasmodium berghei/pathogenicity , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protozoan Proteins/genetics , Signal Transduction
10.
Sci Rep ; 6: 21570, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26865329

ABSTRACT

Visual rhodopsins are membrane proteins that function as light photoreceptors in the vertebrate retina. Specific amino acids have been positively selected in visual pigments during mammal evolution, which, as products of adaptive selection, would be at the base of important functional innovations. We have analyzed the top candidates for positive selection at the specific amino acids and the corresponding reverse changes (F13M, Q225R and A346S) in order to unravel the structural and functional consequences of these important sites in rhodopsin evolution. We have constructed, expressed and immunopurified the corresponding mutated pigments and analyzed their molecular phenotypes. We find that position 13 is very important for the folding of the receptor and also for proper protein glycosylation. Position 225 appears to be important for the function of the protein affecting the G-protein activation process, and position 346 would also regulate functionality of the receptor by enhancing G-protein activation and presumably affecting protein phosphorylation by rhodopsin kinase. Our results represent a link between the evolutionary analysis, which pinpoints the specific amino acid positions in the adaptive process, and the structural and functional analysis, closer to the phenotype, making biochemical sense of specific selected genetic sequences in rhodopsin evolution.


Subject(s)
Amino Acid Substitution , Biological Evolution , Mammals/genetics , Phylogeny , Rhodopsin/chemistry , Adaptation, Physiological , Alanine/chemistry , Alanine/metabolism , Amino Acid Sequence , Animals , Arginine/chemistry , Arginine/metabolism , COS Cells , Chlorocebus aethiops , G-Protein-Coupled Receptor Kinase 1/genetics , G-Protein-Coupled Receptor Kinase 1/metabolism , Gene Expression , Glutamine/chemistry , Glutamine/metabolism , Glycosylation , Humans , Mammals/classification , Mammals/metabolism , Methionine/chemistry , Methionine/metabolism , Models, Molecular , Mutation , Phenylalanine/chemistry , Phenylalanine/metabolism , Phosphorylation , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism , Selection, Genetic , Serine/chemistry , Serine/metabolism
11.
Proc Biol Sci ; 282(1820): 20152215, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26631565

ABSTRACT

Determining the influence of complex, molecular-system dynamics on the evolution of proteins is hindered by the significant challenge of quantifying the control exerted by the proteins on system output. We have employed a combination of systems biology and molecular evolution analyses in a first attempt to unravel this relationship. We employed a comprehensive mathematical model of mammalian phototransduction to predict the degree of influence that each protein in the system exerts on the high-level dynamic behaviour. We found that the genes encoding the most dynamically sensitive proteins exhibit relatively relaxed evolutionary constraint. We also investigated the evolutionary and epistatic influences of the many nonlinear interactions between proteins in the system and found several pairs to have coevolved, including those whose interactions are purely dynamical with respect to system output. This evidence points to a key role played by nonlinear system dynamics in influencing patterns of molecular evolution.


Subject(s)
Evolution, Molecular , Light Signal Transduction/genetics , Animals , Computer Simulation , Electrophysiological Phenomena , Epistasis, Genetic , Humans , Mammals , Nonlinear Dynamics , Receptors, G-Protein-Coupled/genetics , Selection, Genetic , Systems Biology , Vision, Ocular/genetics
12.
Mol Biosyst ; 10(6): 1481-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24675755

ABSTRACT

Vertebrate visual phototransduction is perhaps the most well-studied G-protein signaling pathway. A wealth of available biochemical and electrophysiological data has resulted in a rich history of mathematical modeling of the system. However, while the most comprehensive models have relied upon amphibian biochemical and electrophysiological data, modern research typically employs mammalian species, particularly mice, which exhibit significantly faster signaling dynamics. In this work, we present an adaptation of a previously published, comprehensive model of amphibian phototransduction that can produce quantitatively accurate simulations of the murine photoresponse. We demonstrate the ability of the model to predict responses to a wide range of stimuli and under a variety of mutant conditions. Finally, we employ the model to highlight a likely unknown mechanism related to the interaction between rhodopsin and rhodopsin kinase.


Subject(s)
Amphibians/physiology , Computational Biology/methods , Models, Biological , Retinal Rod Photoreceptor Cells/physiology , Algorithms , Animals , G-Protein-Coupled Receptor Kinase 1/metabolism , Mice , Models, Animal , Signal Transduction , Vision, Ocular
13.
Evolution ; 68(2): 605-13, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24102646

ABSTRACT

Relationships between evolutionary rates and gene properties on a genomic, functional, pathway, or system level are being explored to unravel the principles of the evolutionary process. In particular, functional network properties have been analyzed to recognize the constraints they may impose on the evolutionary fate of genes. Here we took as a case study the core metabolic network in human erythrocytes and we analyzed the relationship between the evolutionary rates of its genes and the metabolic flux distribution throughout it. We found that metabolic flux correlates with the ratio of nonsynonymous to synonymous substitution rates. Genes encoding enzymes that carry high fluxes have been more constrained in their evolution, while purifying selection is more relaxed in genes encoding enzymes carrying low metabolic fluxes. These results demonstrate the importance of considering the dynamical functioning of gene networks when assessing the action of selection on system-level properties.


Subject(s)
Enzymes/genetics , Evolution, Molecular , Metabolic Networks and Pathways/genetics , Animals , Enzymes/metabolism , Erythrocytes/metabolism , Genome, Human , Humans , Primates , Selection, Genetic
14.
Cell Commun Signal ; 11(1): 36, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23693153

ABSTRACT

BACKGROUND: Phototransduction in vertebrate photoreceptor cells represents a paradigm of signaling pathways mediated by G-protein-coupled receptors (GPCRs), which share common modules linking the initiation of the cascade to the final response of the cell. In this work, we focused on the recovery phase of the visual photoresponse, which is comprised of several interacting mechanisms. RESULTS: We employed current biochemical knowledge to investigate the response mechanisms of a comprehensive model of the visual phototransduction pathway. In particular, we have improved the model by implementing a more detailed representation of the recoverin (Rec)-mediated calcium feedback on rhodopsin kinase and including a dynamic arrestin (Arr) oligomerization mechanism. The model was successfully employed to investigate the rate limiting steps in the recovery of the rod photoreceptor cell after illumination. Simulation of experimental conditions in which the expression levels of rhodospin kinase (RK), of the regulator of the G-protein signaling (RGS), of Arr and of Rec were altered individually or in combination revealed severe kinetic constraints to the dynamics of the overall network. CONCLUSIONS: Our simulations confirm that RGS-mediated effector shutdown is the rate-limiting step in the recovery of the photoreceptor and show that the dynamic formation and dissociation of Arr homodimers and homotetramers at different light intensities significantly affect the timing of rhodopsin shutdown. The transition of Arr from its oligomeric storage forms to its monomeric form serves to temper its availability in the functional state. Our results may explain the puzzling evidence that overexpressing RK does not influence the saturation time of rod cells at bright light stimuli. The approach presented here could be extended to the study of other GPCR signaling pathways.

15.
BMC Evol Biol ; 13: 52, 2013 Feb 23.
Article in English | MEDLINE | ID: mdl-23433342

ABSTRACT

BACKGROUND: Visual perception is initiated in the photoreceptor cells of the retina via the phototransduction system. This system has shown marked evolution during mammalian divergence in such complex attributes as activation time and recovery time. We have performed a molecular evolutionary analysis of proteins involved in mammalian phototransduction in order to unravel how the action of natural selection has been distributed throughout the system to evolve such traits. RESULTS: We found selective pressures to be non-randomly distributed according to both a simple protein classification scheme and a protein-interaction network representation of the signaling pathway. Proteins which are topologically central in the signaling pathway, such as the G proteins, as well as retinoid cycle chaperones and proteins involved in photoreceptor cell-type determination, were found to be more constrained in their evolution. Proteins peripheral to the pathway, such as ion channels and exchangers, as well as the retinoid cycle enzymes, have experienced a relaxation of selective pressures. Furthermore, signals of positive selection were detected in two genes: the short-wave (blue) opsin (OPN1SW) in hominids and the rod-specific Na+/ Ca2+, K+ ion exchanger (SLC24A1) in rodents. CONCLUSIONS: The functions of the proteins involved in phototransduction and the topology of the interactions between them have imposed non-random constraints on their evolution. Thus, in shaping or conserving system-level phototransduction traits, natural selection has targeted the underlying proteins in a concerted manner.


Subject(s)
Light Signal Transduction , Primates/genetics , Selection, Genetic , Animals , Humans , Opsins/genetics , Photoreceptor Cells, Vertebrate/physiology , Primates/physiology , Systems Biology
16.
BMC Bioinformatics ; 13: 209, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22909249

ABSTRACT

BACKGROUND: Ongoing innovation in phylogenetics and evolutionary biology has been accompanied by a proliferation of software tools, data formats, analytical techniques and web servers. This brings with it the challenge of integrating phylogenetic and other related biological data found in a wide variety of formats, and underlines the need for reusable software that can read, manipulate and transform this information into the various forms required to build computational pipelines. RESULTS: We built a Python software library for working with phylogenetic data that is tightly integrated with Biopython, a broad-ranging toolkit for computational biology. Our library, Bio.Phylo, is highly interoperable with existing libraries, tools and standards, and is capable of parsing common file formats for phylogenetic trees, performing basic transformations and manipulations, attaching rich annotations, and visualizing trees. We unified the modules for working with the standard file formats Newick, NEXUS and phyloXML behind a consistent and simple API, providing a common set of functionality independent of the data source. CONCLUSIONS: Bio.Phylo meets a growing need in bioinformatics for working with heterogeneous types of phylogenetic data. By supporting interoperability with multiple file formats and leveraging existing Biopython features, this library simplifies the construction of phylogenetic workflows. We also provide examples of the benefits of building a community around a shared open-source project. Bio.Phylo is included with Biopython, available through the Biopython website, http://biopython.org.


Subject(s)
Phylogeny , Software , Computational Biology/methods
18.
Proc Biol Sci ; 278(1706): 789-97, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-20826484

ABSTRACT

Polyphenisms-the expression of discrete phenotypic morphs in response to environmental variation-are examples of phenotypic plasticity that may potentially be adaptive in the face of predictable environmental heterogeneity. In the butterfly Bicyclus anynana, we examine the hormonal regulation of phenotypic plasticity that involves divergent developmental trajectories into distinct adult morphs for a suite of traits as an adaptation to contrasting seasonal environments. This polyphenism is induced by temperature during development and mediated by ecdysteroid hormones. We reared larvae at separate temperatures spanning the natural range of seasonal environments and measured reaction norms for ecdysteroids, juvenile hormones (JHs) and adult fitness traits. Timing of peak ecdysteroid, but not JH titres, showed a binary response to the linear temperature gradient. Several adult traits (e.g. relative abdomen mass) responded in a similar, dimorphic manner, while others (e.g. wing pattern) showed a linear response. This study demonstrates that hormone dynamics can translate a linear environmental gradient into a discrete signal and, thus, that polyphenic differences between adult morphs can already be programmed at the stage of hormone signalling during development. The range of phenotypic responses observed within the suite of traits indicates both shared regulation and independent, trait-specific sensitivity to the hormone signal.


Subject(s)
Adaptation, Physiological/physiology , Butterflies/physiology , Ecosystem , Animals , Ecdysteroids/metabolism , Female , Juvenile Hormones/metabolism , Male , Pheromones , Pupa , Seasons , Temperature
19.
J Physiol ; 586(18): 4409-24, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18687716

ABSTRACT

An electroretinogram (ERG) screen identified a mouse with a normal a-wave but lacking a b-wave, and as such it was designated no b-wave3 (nob3). The nob3 phenotype mapped to chromosome 11 in a region containing the metabotropic glutamate receptor 6 gene (Grm6). Sequence analyses of cDNA identified a splicing error in Grm6, introducing an insertion and an early stop codon into the mRNA of affected mice (designated Grm6(nob3)). Immunohistochemistry of the Grm6(nob3) retina showed that GRM6 was absent. The ERG and visual behaviour abnormalities of Grm6(nob3) mice are similar to Grm6(nob4) animals, and similar deficits were seen in compound heterozygotes (Grm6(nob4/nob3)), indicating that Grm6(nob3) is allelic to Grm6(nob4). Visual responses of Grm6(nob3) retinal ganglion cells (RGCs) to light onset were abnormal. Grm6(nob3) ON RGCs were rarely recorded, but when they were, had ill-defined receptive field (RF) centres and delayed onset latencies. When Grm6(nob3) OFF-centre RGC responses were evoked by full-field stimulation, significantly fewer converted that response to OFF/ON compared to Grm6(nob4) RGCs. Grm6(nob4/nob3) RGC responses verified the conclusion that the two mutants are allelic. We propose that Grm6(nob3) is a new model of human autosomal recessive congenital stationary night blindness. However, an allelic difference between Grm6(nob3) and Grm6(nob4) creates a disparity in inner retinal processing. Because the localization of GRM6 is limited to bipolar cells in the On pathway, the observed difference between RGCs in these mutants is likely to arise from differences in their inputs.


Subject(s)
Receptors, Metabotropic Glutamate/genetics , Retinal Ganglion Cells/physiology , Alleles , Amino Acid Sequence , Animals , Chromosome Mapping , Electroretinography , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Mutation , Photic Stimulation , Receptors, Metabotropic Glutamate/metabolism , Retina/anatomy & histology , Retina/metabolism , Sequence Analysis, DNA , Visual Fields
20.
Vis Neurosci ; 24(1): 111-23, 2007.
Article in English | MEDLINE | ID: mdl-17430614

ABSTRACT

We performed genome-wide chemical mutagenesis of C57BL/6J mice using N-ethyl-N-nitrosourea (ENU). Electroretinographic screening of the third generation offspring revealed two G3 individuals from one G1 family with a normal a-wave but lacking the b-wave that we named nob4. The mutation was transmitted with a recessive mode of inheritance and mapped to chromosome 11 in a region containing the Grm6 gene, which encodes a metabotropic glutamate receptor protein, mGluR6. Sequencing confirmed a single nucleotide substitution from T to C in the Grm6 gene. The mutation is predicted to result in substitution of Pro for Ser at position 185 within the extracellular, ligand-binding domain and oocytes expressing the homologous mutation in mGluR6 did not display robust glutamate-induced currents. Retinal mRNA levels for Grm6 were not significantly reduced, but no immunoreactivity for mGluR6 protein was found. Histological and fundus evaluations of nob4 showed normal retinal morphology. In contrast, the mutation has severe consequences for visual function. In nob4 mice, fewer retinal ganglion cells (RGCs) responded to the onset (ON) of a bright full field stimulus. When ON responses could be evoked, their onset was significantly delayed. Visual acuity and contrast sensitivity, measured with optomotor responses, were reduced under both photopic and scotopic conditions. This mutant will be useful because its phenotype is similar to that of human patients with congenital stationary night blindness and will provide a tool for understanding retinal circuitry and the role of ganglion cell encoding of visual information.


Subject(s)
Polymorphism, Single Nucleotide , Receptors, Metabotropic Glutamate/genetics , Animals , Chromosome Mapping , Darkness , Electroretinography/methods , Ethylnitrosourea/pharmacology , Fluorescein Angiography , Genotype , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Mutagens , Mutation , RNA, Messenger/genetics , Retina/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...