Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Toxicon ; 242: 107690, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38508242

ABSTRACT

Two field cases of reddish-black pigmenturia occurred where cattle grazed on an established Cenchrus ciliaris (blue buffalo grass) pasture in South Africa. The pasture was noticeably invaded by Indigofera cryptantha, which was heavily grazed. Apart from the discolored urine, no other clinical abnormalities were detected. Urinalysis revealed hemoglobinuria, proteinuria and an alkaline pH. When the animals were immediately removed from the infested pasture, they made an uneventful recovery. However, a bull died when one of the herds could not be removed from the I. cryptantha-infested pasture. Macroscopically, the kidneys were dark red in color and the urinary bladder contained the dark pigmented urine. Microscopically, the renal tubules contained eosinophilic, granular pigment casts in the lumen. In addition, many renal tubular epithelial cells were attenuated with granular cytoplasm and were detached from the basement membranes. Chemical analysis was performed on dried, milled plant material and two urine samples collected during the field investigations. Qualitative UPLC-UV-qTOF/MS analysis revealed the presence of indican (indoxyl-ß-glucoside) in the stems, leaves and pods of I. cryptantha and indoxyl sulfate was identified, and confirmed with an analytical standard, in the urine samples. It is proposed that following ingestion of I. cryptantha, indican will be hydrolysed in the liver to indoxyl and conjugated with sulfate. Indoxyl sulfate will then be excreted in relatively high concentrations in the urine. In the alkaline urine, two indoxyl molecules might dimerize to form leucoindigo with subsequent oxidation to indigo, thus, contributing to the dark pigmentation of the urine. It is also possible that indoxyl sulfate contributed to the renal failure and death of the bull. Although I. suffruticosa-induced hemoglobinuria has been described in Brazil, this is the first report of I. cryptantha-induced pigmenturia in cattle in South Africa.


Subject(s)
Cattle Diseases , Indigofera , Animals , Cattle , Indican/urine , Indigofera/chemistry , Kidney/drug effects , Kidney/pathology , Plant Poisoning/veterinary , South Africa , Male
3.
Front Pharmacol ; 15: 1308913, 2024.
Article in English | MEDLINE | ID: mdl-38533263

ABSTRACT

Introduction: A significant number of the South African population still rely on traditional medicines (TM) as their primary healthcare due to their belief in their holistic healing and immune-boosting properties. However, little to no scientific data is available on the effects of most TM products on cytokine and cellular biomarkers of the immune response. Here, we evaluated the impact of traditional medicine [Product Nkabinde (PN)] in inducing cellular and cytokine biomarkers of inflammation in peripheral blood mononuclear cells (PBMCs) from eight healthy volunteers. Methods: PN was supplied by a local Traditional Health Practitioner (THP). The IC50 (half maximum concentration) of the standardized extract on isolated PBMCs was established using the cell viability assay over 24 h of incubation. Luminex and flow cytometry assays were used to measure cytokine and cellular levels in PBMCs stimulated with PN and/or PHA over 24, 48, and 72 h, respectively. Results: The IC50 concentration of PN in treated PBMCs was established at 325.3 µg/mL. In the cellular activation assay, the percentages of CD38-HLA-DR + on total CD4+ T cells were significantly increased in PBMCs stimulated with PN compared to unstimulated controls after 24 h (p = 0.008). PN significantly induced the production of anti-inflammatory IL-10 (p = 0.041); proinflammatory cytokines IL-1α (p = 0.003), TNF-α (p < 0.0001); and chemokine MIP-1ß (p = 0.046) compared to the unstimulated control after 24 h. At 48 h incubation, the production of proinflammatory cytokines IL-1α (p = 0.034) and TNF-α (p = 0.011) were significantly induced following treatment with PN. Conclusion: We conclude that the PN possesses in vitro immunomodulatory properties that may influence immune and inflammatory responses. More studies using PN are needed to further understand key parameters mediating induction, expression, and regulation of the immune response in the context of pathogen-associated infections.

4.
Nat Prod Bioprospect ; 13(1): 35, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37798547

ABSTRACT

The antimalarial drug-resistance conundrum which threatens to reverse the great strides taken to curb the malaria scourge warrants an urgent need to find novel chemical scaffolds to serve as templates for the development of new antimalarial drugs. Plants represent a viable alternative source for the discovery of unique potential antiplasmodial chemical scaffolds. To expedite the discovery of new antiplasmodial compounds from plants, the aim of this study was to use phylogenetic analysis to identify higher plant orders and families that can be rationally prioritised for antimalarial drug discovery. We queried the PubMed database for publications documenting antiplasmodial properties of natural compounds isolated from higher plants. Thereafter, we manually collated compounds reported along with plant species of origin and relevant pharmacological data. We systematically assigned antiplasmodial-associated plant species into recognised families and orders, and then computed the resistance index, selectivity index and physicochemical properties of the compounds from each taxonomic group. Correlating the generated phylogenetic trees and the biological data of each clade allowed for the identification of 3 'hot' plant orders and families. The top 3 ranked plant orders were the (i) Caryophyllales, (ii) Buxales, and (iii) Chloranthales. The top 3 ranked plant families were the (i) Ancistrocladaceae, (ii) Simaroubaceae, and (iii) Buxaceae. The highly active natural compounds (IC50 ≤ 1 µM) isolated from these plant orders and families are structurally unique to the 'legacy' antimalarial drugs. Our study was able to identify the most prolific taxa at order and family rank that we propose be prioritised in the search for potent, safe and drug-like antimalarial molecules.

5.
Nat Prod Bioprospect ; 13(1): 37, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37821775

ABSTRACT

The emergence and spread of drug-recalcitrant Plasmodium falciparum parasites threaten to reverse the gains made in the fight against malaria. Urgent measures need to be taken to curb this impending challenge. The higher plant-derived sesquiterpene, quinoline alkaloids, and naphthoquinone natural product classes of compounds have previously served as phenomenal chemical scaffolds from which integral antimalarial drugs were developed. Historical successes serve as an inspiration for the continued investigation of plant-derived natural products compounds in search of novel molecular templates from which new antimalarial drugs could be developed. The aim of this study was to identify potential chemical scaffolds for malaria drug discovery following analysis of historical data on phytochemicals screened in vitro against P. falciparum. To identify these novel scaffolds, we queried an in-house manually curated database of plant-derived natural product compounds and their in vitro biological data. Natural products were assigned to different structural classes using NPClassifier. To identify the most promising chemical scaffolds, we then correlated natural compound class with bioactivity and other data, namely (i) potency, (ii) resistance index, (iii) selectivity index and (iv) physicochemical properties. We used an unbiased scoring system to rank the different natural product classes based on the assessment of their bioactivity data. From this analysis we identified the top-ranked natural product pathway as the alkaloids. The top three ranked super classes identified were (i) pseudoalkaloids, (ii) naphthalenes and (iii) tyrosine alkaloids and the top five ranked classes (i) quassinoids (of super class triterpenoids), (ii) steroidal alkaloids (of super class pseudoalkaloids) (iii) cycloeudesmane sesquiterpenoids (of super class triterpenoids) (iv) isoquinoline alkaloids (of super class tyrosine alkaloids) and (v) naphthoquinones (of super class naphthalenes). Launched chemical space of these identified classes of compounds was, by and large, distinct from that of 'legacy' antimalarial drugs. Our study was able to identify chemical scaffolds with acceptable biological properties that are structurally different from current and previously used antimalarial drugs. These molecules have the potential to be developed into new antimalarial drugs.

6.
J Ethnopharmacol ; 297: 115551, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-35850311

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Aloe marlothii A.Berger (Xanthorrhoeaceae) is indigenous to southern African countries where its aqueous preparations are used in traditional medicine to treat several ailments including hypertension, respiratory infections, venereal diseases, chest pain, sore throat and malaria. AIM OF THE STUDY: The aims of this study were as follows: (i) isolate and identify the antiplasmodial active compounds in A. marlothii roots. As the water extract was previously inactive, the dichloromethane:methanol (DCM:MeOH) (1:1) was used, (ii) examine the activity of the isolated compounds against Plasmodium falciparum asexual blood stage (ABS) parasites as well as for transmission-blocking activity against gametocytes and gametes, and (iii) to use in silico tools to predict the target(s) of the active molecules. MATERIALS AND METHODS: The crude DCM:MeOH (1:1) extract of A. marlothii roots was fractionated on a reverse phase C8 column, using a positive pressure solid-phase extraction (ppSPE) workstation to produce seven fractions. The resulting fractions and the crude DCM:MeOH extract were tested in vitro against P. falciparum (NF54) ABS parasites using the malaria SYBR Green I based-fluorescence assay. Flash silica chromatography and mass-directed preparative high-performance liquid chromatography were utilised to isolate the active compounds. The isolated compounds were evaluated in vitro against P. falciparum asexual (NF54 and K1 strains) and sexual (gametocytes and gametes) stage parasites. Molecular docking was then used for the in silico prediction of targets for the isolated active compounds in P. falciparum. RESULTS: The crude extract and two SPE fractions displayed good antiplasmodial activity with >97% and 100% inhibition of ABS parasites proliferation at 10 and 20 µg/mL, respectively. Following UPLC-MS analysis of these active fractions, a targeted purification resulted in the isolation of six compounds identified as aloesaponol I (1), aloesaponarin I (2), aloesaponol IV (3), ß-sorigenin-1-O-methylether (4), emodin (5), and chrysophanol (6). Aloesaponarin I (2) was the most bioactive, compared to other isolated constituents, against P. falciparum ABS parasites exhibiting equipotency against the drug-sensitive (NF54) (IC50 = 1.54 µg/mL (5 µM)) and multidrug-resistant (K1) (IC50 = 1.58 µg/mL (5 µM)) strains. Aloesaponol IV (3) showed pronounced activity against late-stage (>90% stage IV/V) gametocytes (IC50 = 6.53 µg/mL (22.6 µM)) demonstrating a 3-fold selective potency towards these sexual stages compared to asexual forms of the parasite (IC50 = 19.77 ± 6.835 µg/mL (68 µM)). Transmission-blocking potential of aloesaponol IV (3) was validated by in vitro inhibition of exflagellation of male gametes (94% inhibition at 20 µg/mL). In silico studies identified ß-hematin and DNA topoisomerase II as potential biological targets of compounds 2 and 3, respectively. CONCLUSION: The findings from our study substantiate the traditional use of A. marlothii to treat malaria. To our knowledge, this study has provided the first report on the isolation and identification of antiplasmodial compounds from A. marlothii roots. Furthermore, our study has provided the first report on the transmission-blocking potential of one of the compounds from the genus Aloe, motivating for the investigation of other species within this genus for their potential P. falciparum transmission-blocking activity.


Subject(s)
Aloe , Antimalarials , Malaria, Falciparum , Malaria , Parasites , Animals , Antimalarials/therapeutic use , Chromatography, Liquid , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Male , Molecular Docking Simulation , Plant Extracts/therapeutic use , Plasmodium falciparum , Tandem Mass Spectrometry
7.
Viruses ; 14(7)2022 06 30.
Article in English | MEDLINE | ID: mdl-35891417

ABSTRACT

Despite the success of combination antiretroviral therapy (cART), HIV persists in low- and middle-income countries (LMIC) due to emerging drug resistance and insufficient drug accessibility. Furthermore, cART does not target latently-infected CD4+ T cells, which represent a major barrier to HIV eradication. The "shock and kill" therapeutic approach aims to reactivate provirus expression in latently-infected cells in the presence of cART and target virus-expressing cells for elimination. An attractive therapeutic prototype in LMICs would therefore be capable of simultaneously inhibiting viral replication and inducing latency reversal. Here we report that Gnidia sericocephala, which is used by traditional health practitioners in South Africa for HIV/AIDS management to supplement cART, contains at least four daphnane-type compounds (yuanhuacine A (1), yuanhuacine as part of a mixture (2), yuanhuajine (3), and gniditrin (4)) that inhibit viral replication and/or reverse HIV latency. For example, 1 and 2 inhibit HIV replication in peripheral blood mononuclear cells (PBMC) by >80% at 0.08 µg/mL, while 1 further inhibits a subtype C virus in PBMC with a half-maximal effective concentration (EC50) of 0.03 µM without cytotoxicity. Both 1 and 2 also reverse HIV latency in vitro consistent with protein kinase C activation but at 16.7-fold lower concentrations than the control prostratin. Both 1 and 2 also reverse latency in primary CD4+ T cells from cART-suppressed donors with HIV similar to prostratin but at 6.7-fold lower concentrations. These results highlight G. sericocephala and components 1 and 2 as anti-HIV agents for improving cART efficacy and supporting HIV cure efforts in resource-limited regions.


Subject(s)
Diterpenes , HIV Infections , HIV-1 , Plants, Medicinal , Thymelaeaceae , CD4-Positive T-Lymphocytes , Chromatography, High Pressure Liquid , Diterpenes/pharmacology , Diterpenes/therapeutic use , HIV-1/physiology , Humans , Leukocytes, Mononuclear/metabolism , Virus Activation , Virus Latency
8.
Anal Bioanal Chem ; 414(13): 3971-3985, 2022 May.
Article in English | MEDLINE | ID: mdl-35419694

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, continues to cause global morbidity and mortality despite the increasing availability of vaccines. Alongside vaccines, antivirals are urgently needed to combat SARS-CoV-2 infection and spread, particularly in resource-limited regions which lack access to existing therapeutics. Small molecules isolated from medicinal plants may be able to block cellular entry by SARS-CoV-2 by antagonising the interaction of the viral spike glycoprotein receptor-binding domain (RBD) with the host angiotensin-converting enzyme II (ACE2) receptor. As the medicinal plant Gunnera perpensa L. is being used by some South African traditional healers for SARS-CoV-2/COVID-19 management, we hypothesised that it may contain chemical constituents that inhibit the RBD-ACE2 interaction. Using a previously described AlphaScreen-based protein interaction assay, we show here that the DCM:MeOH extract of G. perpensa readily disrupts RBD (USA-WA1/2020)-ACE2 interactions with a half-maximal inhibition concentration (IC50) of < 0.001 µg/mL, compared to an IC50 of 0.025 µg/mL for the control neutralising antibody REGN10987. Employing hyphenated analytical techniques like UPLC-IMS-HRMS (method developed and validated as per the International Conference on Harmonization guidelines), we identified two ellagitannins, punicalin (2.12% w/w) and punicalagin (1.51% w/w), as plant constituents in the DCM:MeOH extract of G. perpensa which antagonised RBD-ACE2 binding with respective IC50s of 9 and 29 nM. This good potency makes both compounds promising leads for development of future entry-based SARS-CoV-2 antivirals. The results also highlight the advantages of combining reverse pharmacology (based on medicinal plant use) with hyphenated analytical techniques to expedite identification of urgently needed antivirals.


Subject(s)
COVID-19 Drug Treatment , Plants, Medicinal , Angiotensin-Converting Enzyme 2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Plant Extracts/pharmacology , SARS-CoV-2 , South Africa , Spike Glycoprotein, Coronavirus/chemistry
9.
J Ethnopharmacol ; 277: 114222, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34033901

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: There have been different methods proposed to prevent the sexual transmission of HIV-1 and many of them have centered on the use of anti-retrovirals as microbicides. Given that a large section of the African population still relies on herbal medicine, Lobostemon trigonus (L. trigonus), a traditionally used medicinal plant in South Africa to treat HIV-1 was further investigated for its potential as a natural microbicide to prevent the sexual transmission of HIV-1. METHODS: The aerial parts of L. trigonus were oven-dried at 80 °C, ground, extracted with boiling water for 30 min and then filtered. The aqueous extract produced was then bioassayed using different HIV-1 inhibition assays. The active components were purified and chemically profiled using ultra-performance liquid chromatography/quadrupole time-of flight mass spectrometry (UPLC-qTOF-MS). The mechanism of HIV-1 inhibition was determined by fusion arrest assay and time of addition assay. Molecular modelling and molecular dynamic simulations, using Schrödinger, were used to better understand the molecule's mechanism of entry inhibition by evaluating their docking affinity and stability against the gp120 of HIV-1. RESULTS: The aqueous extract of this plant had a broad spectrum of activity against different subtypes of the virus; neutralizing subtype A, B and C in the TZM-bl cells, with IC50 values ranging from 0.10 to 7.21 µg/mL. The extract was also inhibitory to the virus induced cytopathic effects in CEM-SS cells with an EC50 of 8.9 µg/mL. In addition, it inhibited infection in peripheral blood mononuclear cells (PBMC) and macrophages with IC50 values of 0.97 and 4.4 µg/mL, respectively. In the presence of vaginal and seminal simulants, and in human semen it retained its inhibitory activity albeit with a decrease in efficiency, by about 3-fold. Studies of the mode of action suggested that the extract blocked HIV-1 attachment to target cells. No toxicity was observed when the Lactobacilli strains, L. acidophilus, L. jensenii, and L. crispatus that populate the female genital tract were cultured in the presence of L. trigonus extract. UPLC-qTOF-MS analyses of the purified fraction of the extract, confirmed the presence of six compounds of which four were identified as rosmarinic acid, salvianolic acids B and C and lithospermic acid. The additional molecular dynamic simulations provided further insight into the entry inhibitory characteristics of salvianolic acid B against the HIV-1 gp120, with a stable pose being found within the CD4 binding site. CONCLUSION: The data suggests that the inhibitory effect of L. trigonus may be due to the presence of organic acids which are known to possess anti-HIV-1 properties. The molecules salvianolic acids B and C have been identified for the first time in L. trigonus species. Our study also showed that the L. trigonus extract blocked HIV-1 attachment to target cells, and that it has a broad spectrum of activity against different subtypes of the virus; thus, justifying further investigation as a HIV-1 microbicide.


Subject(s)
Boraginaceae/chemistry , HIV-1/drug effects , Plant Extracts/pharmacology , Anti-HIV Agents/isolation & purification , Anti-HIV Agents/pharmacology , Chromatography, High Pressure Liquid , Female , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Male , Models, Molecular , Molecular Dynamics Simulation , Plant Components, Aerial , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...