Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetologia ; 55(2): 450-6, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22002008

ABSTRACT

AIMS/HYPOTHESIS: Insulin's rate of entry into skeletal muscle appears to be the rate-limiting step for muscle insulin action and is slowed by insulin resistance. Despite its obvious importance, uncertainty remains as to whether the transport of insulin from plasma to muscle interstitium is a passive diffusional process or a saturable transport process regulated by the insulin receptor. METHODS: To address this, here we directly measured the rate of (125)I-labelled insulin uptake by rat hindlimb muscle and examined how that is affected by adding unlabelled insulin at high concentrations. We used mono-iodinated [(125)I]Tyr(A14)-labelled insulin and short (5 min) exposure times, combined with trichloroacetic acid precipitation, to trace intact bioactive insulin. RESULTS: Compared with saline, high concentrations of unlabelled insulin delivered either continuously (insulin clamp) or as a single bolus, significantly raised plasma (125)I-labelled insulin, slowed the movement of (125)I-labelled insulin from plasma into liver, spleen and heart (p < 0.05, for each) but increased kidney (125)I-labelled insulin uptake. High concentrations of unlabelled insulin delivered either continuously (insulin clamp), or as a single bolus, significantly decreased skeletal muscle (125)I-labelled insulin clearance (p < 0.01 for each). Increasing muscle perfusion by electrical stimulation did not prevent the inhibitory effect of unlabelled insulin on muscle (125)I-labelled insulin clearance. CONCLUSIONS/INTERPRETATION: These results indicate that insulin's trans-endothelial movement within muscle is a saturable process, which is likely to involve the insulin receptor. Current findings, together with other recent reports, suggest that trans-endothelial insulin transport may be an important site at which muscle insulin action is modulated in clinical and pathological settings.


Subject(s)
Endothelium, Vascular/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , Animals , Biological Transport , Diffusion , Endothelial Cells/cytology , Glucose Clamp Technique , Insulin Resistance , Male , Rats , Rats, Sprague-Dawley , Receptor, Insulin/metabolism , Tissue Distribution , Trichloroacetic Acid/chemistry
2.
Diabetologia ; 52(5): 752-64, 2009 May.
Article in English | MEDLINE | ID: mdl-19283361

ABSTRACT

Evidence suggests that insulin delivery to skeletal muscle interstitium is the rate-limiting step in insulin-stimulated muscle glucose uptake and that this process is impaired by insulin resistance. In this review we examine the basis for the hypothesis that insulin acts on the vasculature at three discrete steps to enhance its own delivery to muscle: (1) relaxation of resistance vessels to increase total blood flow; (2) relaxation of pre-capillary arterioles to increase the microvascular exchange surface perfused within skeletal muscle (microvascular recruitment); and (3) the trans-endothelial transport (TET) of insulin. Insulin can relax resistance vessels and increase blood flow to skeletal muscle. However, there is controversy as to whether this occurs at physiological concentrations of, and exposure times to, insulin. The microvasculature is recruited more quickly and at lower insulin concentrations than are needed to increase total blood flow, a finding consistent with a physiological role for insulin in muscle insulin delivery. Microvascular recruitment is impaired by obesity, diabetes and nitric oxide synthase inhibitors. Insulin TET is a third potential site for regulating insulin delivery. This is underscored by the consistent finding that steady-state insulin concentrations in plasma are approximately twice those in muscle interstitium. Recent in vivo and in vitro findings suggest that insulin traverses the vascular endothelium via a trans-cellular, receptor-mediated pathway, and emerging data indicate that insulin acts on the endothelium to facilitate its own TET. Thus, muscle insulin delivery, which is rate-limiting for its metabolic action, is itself regulated by insulin at multiple steps. These findings highlight the need to further understand the role of the vascular actions of insulin in metabolic regulation.


Subject(s)
Insulin/physiology , Muscle, Skeletal/physiology , Animals , Glucose/metabolism , Glucose Clamp Technique , Homeostasis , Humans , Hyperinsulinism/physiopathology , Insulin/blood , Insulin Resistance/physiology , Kinetics , Microcirculation/physiology , Microdialysis , Muscle, Skeletal/blood supply
SELECTION OF CITATIONS
SEARCH DETAIL
...