Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 919: 170820, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340814

ABSTRACT

In this work, different ratios of palladium - cerium oxide (Pd/CeO2) catalyst were synthesized and characterized, while their sonocatalytic activity was evaluated for the degradation of the xenobiotic Bisphenol A (BPA) from aqueous solutions. Sonocatalytic activity expressed as BPA decomposition exhibited a volcano-type behavior in relation to the Pd loading, and the 0.25Pd/CeO2 catalyst characterized by the maximum Pd dispersion and lower crystallite size demonstrated the higher activity. Using 500 mg/L of 0.25 % Pd/CeO2 increased the kinetic constant for BPA destruction by more than two times compared to sonolysis alone (20 kHz at 71 W/L). Meanwhile, the simultaneous use of ultrasound and a catalyst enhanced the efficiency by 50.1 % compared to the sum of the individual processes, resulting in 95 % BPA degradation in 60 min. The sonocatalytic degradation of BPA followed pseudo-first-order kinetics, and the apparent kinetic constant was increased with ultrasound power and catalyst loading, while the efficiency was decreased in bottled water and secondary effluent. From the experiments that were conducted using appropriate scavengers, it was revealed that the degradation mainly occurred on the bubble/liquid interface of the formed cavities, while the reactive species produced from the thermal or light excitation of the prepared semiconductor also participated in the reaction. Five first-stage and four late-stage transformation products were identified using UHPLC/TOF-MS, and a pathway for the sonocatalytic degradation of BPA was proposed. According to ECOSAR software prediction, most transformation by-products (TBPs) present lower ecotoxicity than the parent compound, although some remain toxic to the indicators chosen.

2.
J Environ Manage ; 328: 117007, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36521216

ABSTRACT

Sonochemical oxidation was employed for the degradation of the drug dexamethasone (Dex). The oxidation at 20 kHz followed pseudo-first-order kinetics and increased with applied ultrasound power density. Acoustic cavitation at 71 W/L was able to eliminate 500 µg/L of dexamethasone from ultrapure water at inherent pH in less than 60 min. The oxidation was enhanced at pH 3 and decreased at increased Dex concentration. Scavenging experiments with tert-butanol showed that hydroxyl radicals play a crucial role in decomposition, where the reaction mainly occurs on the gas-liquid interface of the formed cavities. The addition of chloride did not affect Dex removal, while in the presence of 10 mg/L of humic acid or bicarbonate, the apparent kinetic constant decreased from 0.0423 ± 0.004 min-1 to about 0.03 ± 0.002 min-1. The rate in secondary effluent was 3.3 times lower than in ultrapure water due to the complexity of the actual matrix. Six transformation products were identified via high resolution LC-MS during the sonochemical oxidation of 3 mg/L Dex in ultrapure water. The presence of polyethylene or polystyrene microplastics slightly enhanced DEX sonodegradation. The effect of ultrasound irradiation at 71 W/L for 60 min on the microplastics surfaces was inconsiderable.


Subject(s)
Water Pollutants, Chemical , Water Purification , Microplastics , Plastics , Water Pollutants, Chemical/chemistry , Water/chemistry , Oxidation-Reduction , Dexamethasone , Kinetics
3.
J Environ Manage ; 318: 115568, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35777153

ABSTRACT

This work is a critical review of the most important studies that have dealt with heat-activated persulfate to degrade persistent micropollutants in the last six years. The effect of the different operating parameters is discussed, wherein in all cases, the efficiency was favored at higher temperatures and oxidant concentrations. Particular emphasis was given to the effect of the aqueous matrix. Since heat activation is a homogeneous process based on the production of free radicals, in most of the studies presented, the removal of pollutants decreases as the complexity of the aqueous matrix increases except in cases where secondary oxidative species are produced that are selective with specific pollutants. It has also been observed that the change in toxicity usually follows the removal of the parent compound despite the formation of several by-products. Nowadays, combining different processes for the simultaneous activation of persulfate seems to be gaining ground. A hybrid process is an interesting strategy to reduce costs and increase efficiency, especially in real wastewater. In this light, the most interesting studies of hybrid systems for the destruction of micropollutants in recent years based on thermally activated persulfate are also summarized. Finally, some steps are proposed for future research towards the industrial application, including the study of chemical mixtures, the integrated toxicity assessment, the examination of simultaneous disinfection and decomposition of pollutants into real wastewater, the estimation of the required costs, and energy the combination of processes and their coupling with renewable sources, and the design of pilot plants and the scale-up of the hybrid processes.


Subject(s)
Water Pollutants, Chemical , Water Purification , Hot Temperature , Oxidation-Reduction , Wastewater/chemistry , Water , Water Pollutants, Chemical/chemistry
4.
Chemosphere ; 287(Pt 1): 131952, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34450371

ABSTRACT

In this study, the oxidative degradation of losartan (LOS), a widely administered medicine for high blood pressure by heat-activated persulfate was investigated. Increased temperature and persulfate concentration, as well as acidic conditions enhance the degradation efficiency of LOS, whose rate follows pseudo-first order kinetics. From the respective apparent rate constants in the range 40-60 °C, an apparent activation energy of 112.70 kJ/mol was computed. Radical scavenging tests demonstrated that both HO• and [Formula: see text] contribute towards LOS degradation. LOS degradation was suppressed in real water matrices including bottled water (BW) and secondary wastewater effluent (WW), while other experiments indicated that the presence of bicarbonates and humic acid negatively affected its oxidation. Instead, the addition of chloride ions at 250 mg/L resulted in a positive effect on LOS removal. The combination of heat-activated PS with low-frequency ultrasound exhibited a synergistic effect, with the ratio S being 2.29 in BW and 1.52 in WW. Five transformation products of LOS were identified through HRMS suspect and non-target screening approaches, among which two are reported for the first time. Using the in-house risk assessment program, ToxTrAMs was revealed that most of the identified TPs present higher toxicity than LOS against Daphnia magna.


Subject(s)
Drinking Water , Pharmaceutical Preparations , Water Pollutants, Chemical , Hot Temperature , Kinetics , Losartan , Oxidation-Reduction , Sulfates , Water Pollutants, Chemical/analysis
5.
J Environ Manage ; 270: 110820, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32721297

ABSTRACT

Different pre-conditioning treatments were evaluated in order to stabilize red mud, a waste product from bauxite processing, for obtaining heterogeneous catalysts (named as B1-B3) that can be employed as suitable activators of sodium persulfate (SPS) for the degradation of sulfamethoxazole (SMX), a model antibiotic, in water. The presence of Fe3O4 in the composition of the catalysts was found to be a key factor for a suitable activation of SPS, according to the XPS measurements. The oxidation of SMX was successfully fitted to a pseudo-first-order kinetic model (r2 > 0.96), obtaining a 68% removal after 180 min when 0.8 mg/L of SMX was oxidized with 2 g/L of SPS and 2 g/L of catalyst B3. The presence of organic and/or inorganic constituents in the water matrix significantly hindered the degradation rate of SMX, the apparent kinetic constants being from 2 to 3 times lower than that determined in ultrapure water test. The use of ultrasound irradiation coupled to the addition of B3 catalyst improved importantly the SMX oxidation in real aqueous matrices, thus attaining values of removal which almost triplicated the ones obtained in absence of ultrasounds.


Subject(s)
Water Pollutants, Chemical/analysis , Water Purification , Anti-Bacterial Agents/analysis , Oxidation-Reduction , Sulfamethoxazole , Water
6.
J Environ Manage ; 269: 110783, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32430283

ABSTRACT

The electrochemical oxidation (EO) of butyl paraben (BP) over boron-doped diamond (BDD) anode was studied in this work. Emphasis was put on degradation performance in various actual water matrices, including secondary treated wastewater (WW), bottled water (BW), surface water (SW), ultrapure water (UW), and ultrapure water spiked with humic acid (HA). Experiments were performed utilizing 0.1 M Na2SO4 as the electrolyte. Interestingly, matrix complexity was found to favor BP degradation, i.e. in the order WW ~ BW > SW > UW, thus implying some kind of synergy between the water matrix constituents, the reactive oxygen species (ROS) and the anode surface. The occurrence of chloride in water matrices favors reaction presumably due to the formation of chlorine-based oxidative species, and this can partially offset the need to work at increased current densities in the case of chlorine-free electrolytes. No pH effect in the range 3-8 on degradation was recorded. EO oxidation was also compared with a sulfate radical process using carbon black as activator of sodium persulfate. The matrix effect was, in this case, detrimental (i.e. UW > BW > WW), pinpointing the different behavior of different processes in similar environments.


Subject(s)
Diamond , Water Pollutants, Chemical , Boron , Electrodes , Oxidation-Reduction , Parabens , Sulfates
SELECTION OF CITATIONS
SEARCH DETAIL
...