Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Hum Behav ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802540

ABSTRACT

Human evolutionary history in Central Africa reflects a deep history of population connectivity. However, Central African hunter-gatherers (CAHGs) currently speak languages acquired from their neighbouring farmers. Hence it remains unclear which aspects of CAHG cultural diversity results from long-term evolution preceding agriculture and which reflect borrowing from farmers. On the basis of musical instruments, foraging tools, specialized vocabulary and genome-wide data from ten CAHG populations, we reveal evidence of large-scale cultural interconnectivity among CAHGs before and after the Bantu expansion. We also show that the distribution of hunter-gatherer musical instruments correlates with the oldest genomic segments in our sample predating farming. Music-related words are widely shared between western and eastern groups and likely precede the borrowing of Bantu languages. In contrast, subsistence tools are less frequently exchanged and may result from adaptation to local ecologies. We conclude that CAHG material culture and specialized lexicon reflect a long evolutionary history in Central Africa.

2.
Pac Symp Biocomput ; 29: 327-340, 2024.
Article in English | MEDLINE | ID: mdl-38160290

ABSTRACT

The lack of diversity in genomic datasets, currently skewed towards individuals of European ancestry, presents a challenge in developing inclusive biomedical models. The scarcity of such data is particularly evident in labeled datasets that include genomic data linked to electronic health records. To address this gap, this paper presents PopGenAdapt, a genotype-to-phenotype prediction model which adopts semi-supervised domain adaptation (SSDA) techniques originally proposed for computer vision. PopGenAdapt is designed to leverage the substantial labeled data available from individuals of European ancestry, as well as the limited labeled and the larger amount of unlabeled data from currently underrepresented populations. The method is evaluated in underrepresented populations from Nigeria, Sri Lanka, and Hawaii for the prediction of several disease outcomes. The results suggest a significant improvement in the performance of genotype-to-phenotype models for these populations over state-of-the-art supervised learning methods, setting SSDA as a promising strategy for creating more inclusive machine learning models in biomedical research.Our code is available at https://github.com/AI-sandbox/PopGenAdapt.


Subject(s)
Biomedical Research , Computational Biology , Humans , Electronic Health Records , Phenotype , Genotype , Supervised Machine Learning
3.
Pac Symp Biocomput ; 29: 404-418, 2024.
Article in English | MEDLINE | ID: mdl-38160295

ABSTRACT

Precision medicine models often perform better for populations of European ancestry due to the over-representation of this group in the genomic datasets and large-scale biobanks from which the models are constructed. As a result, prediction models may misrepresent or provide less accurate treatment recommendations for underrepresented populations, contributing to health disparities. This study introduces an adaptable machine learning toolkit that integrates multiple existing methodologies and novel techniques to enhance the prediction accuracy for underrepresented populations in genomic datasets. By leveraging machine learning techniques, including gradient boosting and automated methods, coupled with novel population-conditional re-sampling techniques, our method significantly improves the phenotypic prediction from single nucleotide polymorphism (SNP) data for diverse populations. We evaluate our approach using the UK Biobank, which is composed primarily of British individuals with European ancestry, and a minority representation of groups with Asian and African ancestry. Performance metrics demonstrate substantial improvements in phenotype prediction for underrepresented groups, achieving prediction accuracy comparable to that of the majority group. This approach represents a significant step towards improving prediction accuracy amidst current dataset diversity challenges. By integrating a tailored pipeline, our approach fosters more equitable validity and utility of statistical genetics methods, paving the way for more inclusive models and outcomes.


Subject(s)
Computational Biology , Machine Learning , Humans , Minority Groups , Phenotype , White People , UK Biobank
4.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873492

ABSTRACT

The lack of diversity in genomic datasets, currently skewed towards individuals of European ancestry, presents a challenge in developing inclusive biomedical models. The scarcity of such data is particularly evident in labeled datasets that include genomic data linked to electronic health records. To address this gap, this paper presents PopGenAdapt, a genotype-to-phenotype prediction model which adopts semi-supervised domain adaptation (SSDA) techniques originally proposed for computer vision. PopGenAdapt is designed to leverage the substantial labeled data available from individuals of European ancestry, as well as the limited labeled and the larger amount of unlabeled data from currently underrepresented populations. The method is evaluated in underrepresented populations from Nigeria, Sri Lanka, and Hawaii for the prediction of several disease outcomes. The results suggest a significant improvement in the performance of genotype-to-phenotype models for these populations over state-of-the-art supervised learning methods, setting SSDA as a promising strategy for creating more inclusive machine learning models in biomedical research.

5.
bioRxiv ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37904983

ABSTRACT

Precision medicine models often perform better for populations of European ancestry due to the over-representation of this group in the genomic datasets and large-scale biobanks from which the models are constructed. As a result, prediction models may misrepresent or provide less accurate treatment recommendations for underrepresented populations, contributing to health disparities. This study introduces an adaptable machine learning toolkit that integrates multiple existing methodologies and novel techniques to enhance the prediction accuracy for underrepresented populations in genomic datasets. By leveraging machine learning techniques, including gradient boosting and automated methods, coupled with novel population-conditional re-sampling techniques, our method significantly improves the phenotypic prediction from single nucleotide polymorphism (SNP) data for diverse populations. We evaluate our approach using the UK Biobank, which is composed primarily of British individuals with European ancestry, and a minority representation of groups with Asian and African ancestry. Performance metrics demonstrate substantial improvements in phenotype prediction for underrepresented groups, achieving prediction accuracy comparable to that of the majority group. This approach represents a significant step towards improving prediction accuracy amidst current dataset diversity challenges. By integrating a tailored pipeline, our approach fosters more equitable validity and utility of statistical genetics methods, paving the way for more inclusive models and outcomes.

6.
Nature ; 622(7984): 775-783, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821706

ABSTRACT

Latin America continues to be severely underrepresented in genomics research, and fine-scale genetic histories and complex trait architectures remain hidden owing to insufficient data1. To fill this gap, the Mexican Biobank project genotyped 6,057 individuals from 898 rural and urban localities across all 32 states in Mexico at a resolution of 1.8 million genome-wide markers with linked complex trait and disease information creating a valuable nationwide genotype-phenotype database. Here, using ancestry deconvolution and inference of identity-by-descent segments, we inferred ancestral population sizes across Mesoamerican regions over time, unravelling Indigenous, colonial and postcolonial demographic dynamics2-6. We observed variation in runs of homozygosity among genomic regions with different ancestries reflecting distinct demographic histories and, in turn, different distributions of rare deleterious variants. We conducted genome-wide association studies (GWAS) for 22 complex traits and found that several traits are better predicted using the Mexican Biobank GWAS compared to the UK Biobank GWAS7,8. We identified genetic and environmental factors associating with trait variation, such as the length of the genome in runs of homozygosity as a predictor for body mass index, triglycerides, glucose and height. This study provides insights into the genetic histories of individuals in Mexico and dissects their complex trait architectures, both crucial for making precision and preventive medicine initiatives accessible worldwide.


Subject(s)
Biological Specimen Banks , Genetics, Medical , Genome, Human , Genomics , Hispanic or Latino , Humans , Blood Glucose/genetics , Blood Glucose/metabolism , Body Height/genetics , Body Mass Index , Gene-Environment Interaction , Genetic Markers/genetics , Genome-Wide Association Study , Hispanic or Latino/classification , Hispanic or Latino/genetics , Homozygote , Mexico , Phenotype , Triglycerides/blood , Triglycerides/genetics , United Kingdom , Genome, Human/genetics
7.
Nat Comput Sci ; 3(7): 621-629, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37600116

ABSTRACT

Characterizing the genetic structure of large cohorts has become increasingly important as genetic studies extend to massive, increasingly diverse biobanks. Popular methods decompose individual genomes into fractional cluster assignments with each cluster representing a vector of DNA variant frequencies. However, with rapidly increasing biobank sizes, these methods have become computationally intractable. Here we present Neural ADMIXTURE, a neural network autoencoder that follows the same modeling assumptions as the current standard algorithm, ADMIXTURE, while reducing the compute time by orders of magnitude surpassing even the fastest alternatives. One month of continuous compute using ADMIXTURE can be reduced to just hours with Neural ADMIXTURE. A multi-head approach allows Neural ADMIXTURE to offer even further acceleration by calculating multiple cluster numbers in a single run. Furthermore, the models can be stored, allowing cluster assignment to be performed on new data in linear time without needing to share the training samples.

8.
Science ; 380(6645): eadd6142, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37167382

ABSTRACT

Aridoamerica and Mesoamerica are two distinct cultural areas in northern and central Mexico, respectively, that hosted numerous pre-Hispanic civilizations between 2500 BCE and 1521 CE. The division between these regions shifted southward because of severe droughts ~1100 years ago, which allegedly drove a population replacement in central Mexico by Aridoamerican peoples. In this study, we present shotgun genome-wide data from 12 individuals and 27 mitochondrial genomes from eight pre-Hispanic archaeological sites across Mexico, including two at the shifting border of Aridoamerica and Mesoamerica. We find population continuity that spans the climate change episode and a broad preservation of the genetic structure across present-day Mexico for the past 2300 years. Lastly, we identify a contribution to pre-Hispanic populations of northern and central Mexico from two ancient unsampled "ghost" populations.


Subject(s)
Genetic Structures , Hispanic or Latino , Humans , History, Ancient , Mexico , Population Dynamics
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3558-3562, 2022 07.
Article in English | MEDLINE | ID: mdl-36085664

ABSTRACT

We analyze dog genotypes (i.e., positions of dog DNA sequences that often vary between different dogs) in order to predict the corresponding phenotypes (i.e., unique observed characteristics). More specifically, given chromosome data from a dog, we aim to predict the breed, height, and weight. We explore a variety of linear and non-linear classification and regression techniques to accomplish these three tasks. We also investigate the use of a neural network (both in linear and non-linear modes) for breed classification and compare the performance to traditional statistical methods. We show that linear methods generally outperform or match the performance of non-linear methods for breed classification. However, we show that the reverse is true for height and weight regression. Finally, we evaluate the results of all of these methods based on the number of input features used in the analysis. We conduct experiments using different fractions of the full genomic sequences, resulting in input sequences ranging from 20 SNPs to ∼200k SNPs. In doing so, we explore the impact of using a very limited number of SNPs for prediction. Our experiments demonstrate that these phenotypes in dogs can be predicted with as few as 0.5% of randomly selected SNPs (i.e., 992 SNPs) and that dog breeds can be classified with 50% balanced accuracy with as few as 0.02% SNPs (i.e., 40 SNPs).


Subject(s)
Genomics , Polymorphism, Single Nucleotide , Animals , Dogs , Genotype , Neural Networks, Computer , Phenotype
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1379-1383, 2022 07.
Article in English | MEDLINE | ID: mdl-36086656

ABSTRACT

The generation of synthetic genomic sequences using neural networks has potential to ameliorate privacy and data sharing concerns and to mitigate potential bias within datasets due to under-representation of some population groups. However, there is not a consensus on which architectures, training procedures, and evaluation metrics should be used when simulating single nucleotide polymorphism (SNP) sequences with neural networks. In this paper, we explore the use of Generative Moment Matching Networks (GMMNs) for SNP simulation, we present some architectural and procedural changes to properly train the networks, and we introduce an evaluation scheme to qualitatively and quantitatively assess the quality of the simulated sequences.


Subject(s)
Information Dissemination , Neural Networks, Computer , Computer Simulation , Genotype
11.
Bioinformatics ; 38(Suppl_2): ii27-ii33, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36124792

ABSTRACT

MOTIVATION: Local ancestry inference (LAI) is the high resolution prediction of ancestry labels along a DNA sequence. LAI is important in the study of human history and migrations, and it is beginning to play a role in precision medicine applications including ancestry-adjusted genome-wide association studies (GWASs) and polygenic risk scores (PRSs). Existing LAI models do not generalize well between species, chromosomes or even ancestry groups, requiring re-training for each different setting. Furthermore, such methods can lack interpretability, which is an important element in each of these applications. RESULTS: We present SALAI-Net, a portable statistical LAI method that can be applied on any set of species and ancestries (species-agnostic), requiring only haplotype data and no other biological parameters. Inspired by identity by descent methods, SALAI-Net estimates population labels for each segment of DNA by performing a reference matching approach, which leads to an interpretable and fast technique. We benchmark our models on whole-genome data of humans and we test these models' ability to generalize to dog breeds when trained on human data. SALAI-Net outperforms previous methods in terms of balanced accuracy, while generalizing between different settings, species and datasets. Moreover, it is up to two orders of magnitude faster and uses considerably less RAM memory than competing methods. AVAILABILITY AND IMPLEMENTATION: We provide an open source implementation and links to publicly available data at github.com/AI-sandbox/SALAI-Net. Data is publicly available as follows: https://www.internationalgenome.org (1000 Genomes), https://www.simonsfoundation.org/simons-genome-diversity-project (Simons Genome Diversity Project), https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html (HapMap), ftp://ngs.sanger.ac.uk/production/hgdp/hgdp_wgs.20190516 (Human Genome Diversity Project) and https://www.ncbi.nlm.nih.gov/bioproject/PRJNA448733 (Canid genomes). SUPPLEMENTARY INFORMATION: Supplementary data are available from Bioinformatics online.


Subject(s)
Genome-Wide Association Study , Animals , Dogs , Haplotypes , Humans
12.
Nat Commun ; 13(1): 5107, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042219

ABSTRACT

The SARS-CoV-2 pandemic has differentially impacted populations across race and ethnicity. A multi-omic approach represents a powerful tool to examine risk across multi-ancestry genomes. We leverage a pandemic tracking strategy in which we sequence viral and host genomes and transcriptomes from nasopharyngeal swabs of 1049 individuals (736 SARS-CoV-2 positive and 313 SARS-CoV-2 negative) and integrate them with digital phenotypes from electronic health records from a diverse catchment area in Northern California. Genome-wide association disaggregated by admixture mapping reveals novel COVID-19-severity-associated regions containing previously reported markers of neurologic, pulmonary and viral disease susceptibility. Phylodynamic tracking of consensus viral genomes reveals no association with disease severity or inferred ancestry. Summary data from multiomic investigation reveals metagenomic and HLA associations with severe COVID-19. The wealth of data available from residual nasopharyngeal swabs in combination with clinical data abstracted automatically at scale highlights a powerful strategy for pandemic tracking, and reveals distinct epidemiologic, genetic, and biological associations for those at the highest risk.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Genome, Viral , Genome-Wide Association Study , Humans , SARS-CoV-2/genetics
13.
PLoS Comput Biol ; 18(8): e1010301, 2022 08.
Article in English | MEDLINE | ID: mdl-36007005

ABSTRACT

The estimation of genetic clusters using genomic data has application from genome-wide association studies (GWAS) to demographic history to polygenic risk scores (PRS) and is expected to play an important role in the analyses of increasingly diverse, large-scale cohorts. However, existing methods are computationally-intensive, prohibitively so in the case of nationwide biobanks. Here we explore Archetypal Analysis as an efficient, unsupervised approach for identifying genetic clusters and for associating individuals with them. Such unsupervised approaches help avoid conflating socially constructed ethnic labels with genetic clusters by eliminating the need for exogenous training labels. We show that Archetypal Analysis yields similar cluster structure to existing unsupervised methods such as ADMIXTURE and provides interpretative advantages. More importantly, we show that since Archetypal Analysis can be used with lower-dimensional representations of genetic data, significant reductions in computational time and memory requirements are possible. When Archetypal Analysis is run in such a fashion, it takes several orders of magnitude less compute time than the current standard, ADMIXTURE. Finally, we demonstrate uses ranging across datasets from humans to canids.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Genetics, Population , Genome , Genomics/methods , Humans , Polymorphism, Single Nucleotide/genetics
14.
Nat Rev Genet ; 23(11): 665-679, 2022 11.
Article in English | MEDLINE | ID: mdl-35581355

ABSTRACT

Genome-wide association studies using large-scale genome and exome sequencing data have become increasingly valuable in identifying associations between genetic variants and disease, transforming basic research and translational medicine. However, this progress has not been equally shared across all people and conditions, in part due to limited resources. Leveraging publicly available sequencing data as external common controls, rather than sequencing new controls for every study, can better allocate resources by augmenting control sample sizes or providing controls where none existed. However, common control studies must be carefully planned and executed as even small differences in sample ascertainment and processing can result in substantial bias. Here, we discuss challenges and opportunities for the robust use of common controls in high-throughput sequencing studies, including study design, quality control and statistical approaches. Thoughtful generation and use of large and valuable genetic sequencing data sets will enable investigation of a broader and more representative set of conditions, environments and genetic ancestries than otherwise possible.


Subject(s)
Exome , Genome-Wide Association Study , Exome/genetics , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Exome Sequencing
15.
Philos Trans R Soc Lond B Biol Sci ; 377(1852): 20200419, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35430879

ABSTRACT

The population of Mexico has a considerable genetic substructure due to both its pre-Columbian diversity and due to genetic admixture from post-Columbian trans-oceanic migrations. The latter primarily originated in Europe and Africa, but also, to a lesser extent, in Asia. We analyze previously understudied genetic connections between Asia and Mexico to infer the timing and source of this genetic ancestry in Mexico. We identify the predominant origin within Southeast Asia-specifically western Indonesian and non-Negrito Filipino sources-and we date its arrival in Mexico to approximately 13 generations ago (1620 CE). This points to a genetic legacy from the seventeenth century Manila galleon trade between the colonial Spanish Philippines and the Pacific port of Acapulco. Indeed, within Mexico we observe the highest level of this trans-Pacific ancestry in Acapulco, located in the state of Guerrero. This colonial Spanish trade route from East Asia to Europe was centred on Mexico and appears in historical records, but its legacy has been largely ignored. Identities and stories were suppressed due to slavery, assimilation of the immigrants as 'Indios' and incomplete historical records. Here we characterize this understudied Mexican ancestry. This article is part of the theme issue 'Celebrating 50 years since Lewontin's apportionment of human diversity'.


Subject(s)
Asian People , Genetic Variation , Asia , Asia, Southeastern , Genetics, Population , Humans , Mexico , Philippines
16.
Am J Hum Genet ; 108(12): 2354-2367, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34822764

ABSTRACT

Whole-genome sequencing studies applied to large populations or biobanks with extensive phenotyping raise new analytic challenges. The need to consider many variants at a locus or group of genes simultaneously and the potential to study many correlated phenotypes with shared genetic architecture provide opportunities for discovery not addressed by the traditional one variant, one phenotype association study. Here, we introduce a Bayesian model comparison approach called MRP (multiple rare variants and phenotypes) for rare-variant association studies that considers correlation, scale, and direction of genetic effects across a group of genetic variants, phenotypes, and studies, requiring only summary statistic data. We apply our method to exome sequencing data (n = 184,698) across 2,019 traits from the UK Biobank, aggregating signals in genes. MRP demonstrates an ability to recover signals such as associations between PCSK9 and LDL cholesterol levels. We additionally find MRP effective in conducting meta-analyses in exome data. Non-biomarker findings include associations between MC1R and red hair color and skin color, IL17RA and monocyte count, and IQGAP2 and mean platelet volume. Finally, we apply MRP in a multi-phenotype setting; after clustering the 35 biomarker phenotypes based on genetic correlation estimates, we find that joint analysis of these phenotypes results in substantial power gains for gene-trait associations, such as in TNFRSF13B in one of the clusters containing diabetes- and lipid-related traits. Overall, we show that the MRP model comparison approach improves upon useful features from widely used meta-analysis approaches for rare-variant association analyses and prioritizes protective modifiers of disease risk.


Subject(s)
Genetic Variation , Genome-Wide Association Study , Models, Genetic , Bayes Theorem , Female , Humans , Male , Phenotype
17.
Nature ; 597(7877): 522-526, 2021 09.
Article in English | MEDLINE | ID: mdl-34552258

ABSTRACT

Polynesia was settled in a series of extraordinary voyages across an ocean spanning one third of the Earth1, but the sequences of islands settled remain unknown and their timings disputed. Currently, several centuries separate the dates suggested by different archaeological surveys2-4. Here, using genome-wide data from merely 430 modern individuals from 21 key Pacific island populations and novel ancestry-specific computational analyses, we unravel the detailed genetic history of this vast, dispersed island network. Our reconstruction of the branching Polynesian migration sequence reveals a serial founder expansion, characterized by directional loss of variants, that originated in Samoa and spread first through the Cook Islands (Rarotonga), then to the Society (Totaiete ma) Islands (11th century), the western Austral (Tuha'a Pae) Islands and Tuamotu Archipelago (12th century), and finally to the widely separated, but genetically connected, megalithic statue-building cultures of the Marquesas (Te Henua 'Enana) Islands in the north, Raivavae in the south, and Easter Island (Rapa Nui), the easternmost of the Polynesian islands, settled in approximately AD 1200 via Mangareva.


Subject(s)
Genome, Human/genetics , Genomics , Human Migration/history , Native Hawaiian or Other Pacific Islander/genetics , Female , History, Medieval , Humans , Male , Polynesia
18.
Nature ; 583(7817): 572-577, 2020 07.
Article in English | MEDLINE | ID: mdl-32641827

ABSTRACT

The possibility of voyaging contact between prehistoric Polynesian and Native American populations has long intrigued researchers. Proponents have pointed to the existence of New World crops, such as the sweet potato and bottle gourd, in the Polynesian archaeological record, but nowhere else outside the pre-Columbian Americas1-6, while critics have argued that these botanical dispersals need not have been human mediated7. The Norwegian explorer Thor Heyerdahl controversially suggested that prehistoric South American populations had an important role in the settlement of east Polynesia and particularly of Easter Island (Rapa Nui)2. Several limited molecular genetic studies have reached opposing conclusions, and the possibility continues to be as hotly contested today as it was when first suggested8-12. Here we analyse genome-wide variation in individuals from islands across Polynesia for signs of Native American admixture, analysing 807 individuals from 17 island populations and 15 Pacific coast Native American groups. We find conclusive evidence for prehistoric contact of Polynesian individuals with Native American individuals (around AD 1200) contemporaneous with the settlement of remote Oceania13-15. Our analyses suggest strongly that a single contact event occurred in eastern Polynesia, before the settlement of Rapa Nui, between Polynesian individuals and a Native American group most closely related to the indigenous inhabitants of present-day Colombia.


Subject(s)
Gene Flow/genetics , Genome, Human/genetics , Human Migration/history , Indians, Central American/genetics , Indians, South American/genetics , Islands , Native Hawaiian or Other Pacific Islander/genetics , Central America/ethnology , Colombia/ethnology , Europe/ethnology , Genetics, Population , History, Medieval , Humans , Polymorphism, Single Nucleotide/genetics , Polynesia , South America/ethnology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...