Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36987277

ABSTRACT

3D printing is gaining traction in research and development as a way to quickly, cheaply, and easily manufacture polydimethylsiloxane (PDMS) molds. The most commonly used method is resin printing, which is relatively expensive and requires specialized printers. This study shows that polylactic acid (PLA) filament printing is a cheaper, more readily available alternative to resin printing, that does not inhibit the curing of PDMS. As a proof of concept, a PLA mold for PDMS-based wells was designed, and 3D printed. We introduce an effective method to smooth the printed PLA mold, based on chloroform vapor treatment. After this chemical post-processing step, the smoothened mold was used to cast a ring of PDMS prepolymer. The PDMS ring was attached to a glass coverslip after oxygen plasma treatment. The PDMS-glass well showed no leakage and was well suited to its intended use. When used for cell culturing, monocyte-derived dendritic cells (moDCs) showed no morphological anomalies, as tested by confocal microscopy, nor did they show an increase in cytokines, as tested using ELISA. This underlines the versatility and strength of PLA filament printing and exemplifies how it can be valuable to a researcher's toolset.

2.
Redox Biol ; 59: 102591, 2023 02.
Article in English | MEDLINE | ID: mdl-36574745

ABSTRACT

Pathological conditions associated with dysfunctional wound healing are characterized by impaired remodelling of extracellular matrix (ECM), increased macrophage infiltration, and chronic inflammation. Macrophages also play an important role in wound healing as they drive wound closure by secretion of molecules like transforming growth factor beta-1 (TGF-ß). As the functions of macrophages are regulated by their metabolism, local administration of small molecules that alter this might be a novel approach for treatment of wound-healing disorders. Itaconate is a tricarboxylic acid (TCA) cycle-derived metabolite that has been associated with resolution of macrophage-mediated inflammation. However, its effects on macrophage wound healing functions are unknown. In this study, we investigated the effects of the membrane-permeable 4-octyl itaconate (4-OI) derivative on ECM scavenging by cultured human blood monocyte-derived macrophages (hMDM). We found that 4-OI reduced signalling of p38 mitogen-activated protein kinase (MAPK) induced by the canonical immune stimulus lipopolysaccharide (LPS). Likely as a consequence of this, the production of the inflammatory mediators like tumor necrosis factor (TNF)-α and cyclooxygenase (COX)-2 were also reduced. On the transcriptional level, 4-OI increased expression of the gene coding for TGF-ß (TGFB1), whereas expression of the collagenase matrix metalloprotease-8 (MMP8) was reduced. Furthermore, surface levels of the anti-inflammatory marker CD36, but not CD206 and CD11c, were increased in these cells. To directly investigate the effect of 4-OI on scavenging of ECM by macrophages, we developed an assay to measure uptake of fibrous collagen. We observed that LPS promoted collagen uptake and that this was reversed by 4-OI-induced signaling of nuclear factor erythroid 2-related factor 2 (NRF2), a regulator of cellular resistance to oxidative stress and the reduced glycolytic capacity of the macrophage. These results indicate that 4-OI lowers macrophage inflammation, likely promoting a more wound-resolving phenotype.


Subject(s)
Lipopolysaccharides , Macrophages , Humans , Lipopolysaccharides/adverse effects , Macrophages/metabolism , Inflammation/metabolism , Phenotype , Tumor Necrosis Factor-alpha/metabolism , Cyclooxygenase 2/metabolism , Collagen/metabolism , Transforming Growth Factor beta/metabolism
3.
Biophys Rep (N Y) ; 2(3): 100069, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36425330

ABSTRACT

Localized fluxes, production, and/or degradation coupled to limited diffusion are well known to result in stable spatial concentration gradients of biomolecules in the cell. In this study, we demonstrate that this also holds true for small ions, since we found that the close membrane apposition between the membrane of a phagosome and the surface of the cargo particle it encloses, together with localized membrane rupture, suffice for stable gradients of protons and iron cations within the lumen of the phagosome. Our data show that, in phagosomes containing hexapod-shaped silica colloid particles, the phagosomal membrane is ruptured at the positions of the tips of the rods, but not at other positions. This results in the confined leakage at these positions of protons and iron from the lumen of the phagosome into the cytosol. In contrast, acidification and iron accumulation still occur at the positions of the phagosomes nearer to the cores of the particles. Our study strengthens the concept that coupling metabolic and signaling reaction cascades can be spatially confined by localized limited diffusion.

4.
Peptides ; 158: 170893, 2022 12.
Article in English | MEDLINE | ID: mdl-36244579

ABSTRACT

Chromogranin A (CgA) is a 439 amino acid protein secreted by neuroendocrine cells. Proteolytic processing of CgA results in the production of different bioactive peptides. These peptides have been associated with inflammatory bowel disease, diabetes, and cancer. One of the chromogranin A-derived peptides is ∼52 amino acid long Pancreastatin (PST: human (h)CgA250-301, murine (m)CgA263-314). PST is a glycogenolytic peptide that inhibits glucose-induced insulin secretion from pancreatic islet ß-cells. In addition to this metabolic role, evidence is emerging that PST also has inflammatory properties. This review will discuss the immunomodulatory properties of PST and its possible mechanisms of action and regulation. Moreover, this review will discuss the potential translation to humans and how PST may be an interesting therapeutic target for treating inflammatory diseases.


Subject(s)
Chromogranins , Pancreatic Hormones , Humans , Animals , Mice , Chromogranin A/pharmacology , Pancreatic Hormones/metabolism , Chromogranins/metabolism , Peptides , Amino Acids
5.
Free Radic Biol Med ; 188: 287-297, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35753585

ABSTRACT

5-methoxy tryptophan (5-MTP) is an anti-fibrotic metabolite made by fibroblasts and epithelial cells, present in a micromolar concentrations in human blood, and is associated with the progression of fibrotic kidney disease, but the mechanism is unclear. Here, we show by microscopy and functional assays that 5-MTP influences mitochondria in human peripheral blood monocyte-derived macrophages. As a result, the mitochondrial membranes are more rigid, more branched, and are protected against oxidation. The macrophages also change their metabolism by reducing mitochondrial import of acyl-carnitines, intermediates of fatty acid metabolism, driving glucose import. Moreover, 5-MTP increases the endocytosis of collagen by macrophages, and experiments with inhibition of glucose uptake showed that this is a direct result of their altered metabolism. However, 5-MTP does not affect the macrophages following pathogenic stimulation, due to 5-MTP degradation by induced expression of indole-amine oxygenase-1 (IDO-1). Thus, 5-MTP is a fibrosis-protective metabolite that, in absence of pathogenic stimulation, promotes collagen uptake by anti-inflammatory macrophages by altering the physicochemical properties of their mitochondrial membranes.


Subject(s)
Macrophages , Tryptophan , Collagen/metabolism , Fibrosis , Humans , Macrophages/metabolism , Mitochondria/metabolism , Tryptophan/metabolism , Tryptophan/pharmacology
6.
FEBS Lett ; 596(4): 491-509, 2022 02.
Article in English | MEDLINE | ID: mdl-35007347

ABSTRACT

In autophagy, LC3-positive autophagophores fuse and encapsulate the autophagic cargo in a double-membrane structure. In contrast, lipidated LC3 (LC3-II) is directly formed at the phagosomal membrane in LC3-associated phagocytosis (LAP). In this study, we dissected the effects of autophagy inhibitors on LAP. SAR405, an inhibitor of VPS34, reduced levels of LC3-II and inhibited LAP. In contrast, the inhibitors of endosomal acidification bafilomycin A1 and chloroquine increased levels of LC3-II, due to reduced degradation in acidic lysosomes. However, while bafilomycin A1 inhibited LAP, chloroquine did not. Finally, EACC, which inhibits the fusion of autophagosomes with lysosomes, promoted LC3 degradation possibly by the proteasome. Targeting LAP with small molecule inhibitors is important given its emerging role in infectious and autoimmune diseases.


Subject(s)
Autophagosomes/drug effects , Autophagy/drug effects , Dendritic Cells/drug effects , Phagocytosis/drug effects , Proteasome Endopeptidase Complex/drug effects , Autophagosomes/metabolism , Autophagy/genetics , Cell Differentiation , Chloroquine/pharmacology , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class III Phosphatidylinositol 3-Kinases/genetics , Class III Phosphatidylinositol 3-Kinases/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Endosomes/drug effects , Endosomes/metabolism , Gene Expression Regulation , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Macrolides/pharmacology , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Monocytes/cytology , Monocytes/metabolism , Phagocytosis/genetics , Phagosomes/drug effects , Phagosomes/metabolism , Primary Cell Culture , Proteasome Endopeptidase Complex/metabolism , Pyridines/pharmacology , Pyrimidinones/pharmacology , Thiophenes/pharmacology , Zymosan/metabolism
7.
ACS Chem Biol ; 17(1): 240-251, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35000377

ABSTRACT

Many cellular processes are dependent on correct pH levels, and this is especially important for the secretory pathway. Defects in pH homeostasis in distinct organelles cause a wide range of diseases, including disorders of glycosylation and lysosomal storage diseases. Ratiometric imaging of the pH-sensitive mutant of green fluorescent protein, pHLuorin, has allowed for targeted pH measurements in various organelles, but the required sequential image acquisition is intrinsically slow and therefore the temporal resolution is unsuitable to follow the rapid transit of cargo between organelles. Therefore, we applied fluorescence lifetime imaging microscopy (FLIM) to measure intraorganellar pH with just a single excitation wavelength. We first validated this method by confirming the pH in multiple compartments along the secretory pathway and compared the pH values obtained by the FLIM-based measurements with those obtained by conventional ratiometric imaging. Then, we analyzed the dynamic pH changes within cells treated with Bafilomycin A1, to block the vesicular ATPase, and Brefeldin A, to block endoplasmic reticulum (ER)-Golgi trafficking. Finally, we followed the pH changes of newly synthesized molecules of the inflammatory cytokine tumor necrosis factor-α while they were in transit from the ER via the Golgi to the plasma membrane. The toolbox we present here can be applied to measure intracellular pH with high spatial and temporal resolution and can be used to assess organellar pH in disease models.


Subject(s)
Hydrogen-Ion Concentration , Optical Imaging/methods , Secretory Pathway , Adenosine Triphosphatases/antagonists & inhibitors , Brefeldin A/pharmacology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/enzymology , Endoplasmic Reticulum/metabolism , Golgi Apparatus/drug effects , Golgi Apparatus/enzymology , Golgi Apparatus/metabolism , Humans , Macrolides/pharmacology , Microscopy, Fluorescence/methods , Protein Transport
8.
ACS Biomater Sci Eng ; 7(12): 5622-5632, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34734689

ABSTRACT

Synthetic cancer vaccines may boost anticancer immune responses by co-delivering tumor antigens and adjuvants to dendritic cells (DCs). The accessibility of cancer vaccines to DCs and thereby the delivery efficiency of antigenic material greatly depends on the vaccine platform that is used. Three-dimensional scaffolds have been developed to deliver antigens and adjuvants locally in an immunostimulatory environment to DCs to enable sustained availability. However, current systems have little control over the release profiles of the cargo that is incorporated and are often characterized by an initial high-burst release. Here, an alternative system is designed that co-delivers antigens and adjuvants to DCs through cargo-loaded nanoparticles (NPs) incorporated within biomaterial-based scaffolds. This creates a programmable system with the potential for controlled delivery of their cargo to DCs. Cargo-loaded poly(d,l-lactic-co-glycolic acid) NPs are entrapped within the polymer walls of alginate cryogels with high efficiency while retaining the favorable physical properties of cryogels, including syringe injection. DCs cultured within these NP-loaded scaffolds acquire strong antigen-specific T cell-activating capabilities. These findings demonstrate that introduction of NPs into the walls of macroporous alginate cryogels creates a fully synthetic immunostimulatory niche that stimulates DCs and evokes strong antigen-specific T cell responses.


Subject(s)
Cancer Vaccines , Polyglycolic Acid , Dendritic Cells , Lactic Acid , T-Lymphocytes
9.
Front Immunol ; 11: 1556, 2020.
Article in English | MEDLINE | ID: mdl-32903532

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are unconventional T lymphocytes that express a semi-invariant T cell receptor (TCR) recognizing microbial vitamin B metabolites presented by the highly conserved major histocompatibility complex (MHC) class I like molecule, MR1. The vitamin B metabolites are produced by several commensal and pathogenic bacteria and yeast, but not viruses. Nevertheless, viral infections can trigger MAIT cell activation in a TCR-independent manner, through the release of pro-inflammatory cytokines by antigen-presenting cells (APCs). MAIT cells belong to the innate like T family of cells with a memory phenotype, which allows them to rapidly release Interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and in some circumstances Interleukin (IL)-17 and IL-10, exerting an immunomodulatory role on the ensuing immune response, akin to iNKT cells and γδ T cells. Recent studies implicate MAIT cells in a variety of inflammatory, autoimmune diseases, and in cancer. In addition, through the analysis of the transcriptome of MAIT cells activated in different experimental conditions, an important function in tissue repair and control of immune homeostasis has emerged, shared with other innate-like T cells. In this review, we discuss these recent findings, focussing on the understanding of the molecular mechanisms underpinning MAIT cell activation and effector function in health and disease, which ultimately will aid in clinically harnessing this unique, not donor-restricted cell subtype.


Subject(s)
Immunomodulation , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Animals , Cell Communication , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Leukocytes/immunology , Leukocytes/metabolism , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Protein Binding , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...