Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 114: 1-13, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28214720

ABSTRACT

Olive mill wastewater (OMW) is a major waste stream resulting from numerous operations that occur during the production stages of olive oil. The resulting effluent contains various organic and inorganic contaminants and its environmental impact can be notable. The present work aims at investigating the efficiency of (i) jet-loop reactor with ultrafiltration (UF) membrane system (Jacto.MBR), (ii) solar photo-Fenton oxidation after coagulation/flocculation pre-treatment and (iii) integrated membrane filtration processes (i.e. UF/nanofiltration (NF)) used for the treatment of OMW. According to the results, the efficiency of the biological treatment was high, equal to 90% COD and 80% total phenolic compounds (TPh) removal. A COD removal higher than 94% was achieved by applying the solar photo-Fenton oxidation process as post-treatment of coagulation/flocculation of OMW, while the phenolic fraction was completely eliminated. The combined UF/NF process resulted in very high conductivity and COD removal, up to 90% and 95%, respectively, while TPh were concentrated in the NF concentrate stream (i.e. 93% concentration). Quite important is the fact that the NF concentrate, a valuable and polyphenol rich stream, can be further valorized in various industries (e.g. food, pharmaceutical, etc.). The above treatment processes were found also to be able to reduce the initial OMW phytotoxicity at greenhouse experiments; with the effluent stream of solar photo-Fenton process to be the least phytotoxic compared to the other treated effluents. A SWOT (Strength, Weakness, Opportunities, Threats) analysis was performed, in order to determine both the strengths of each technology, as well as the possible obstacles that need to overcome for achieving the desired levels of treatment. Finally, an economic evaluation of the tested technologies was performed in an effort to measure the applicability and viability of these systems at real scale; highlighting that the cost cannot be regarded as a 'cut off criterion', since the most cost-effective option in not always the optimum one.


Subject(s)
Olea/chemistry , Wastewater/chemistry , Filtration , Industrial Waste , Oxidation-Reduction , Waste Disposal, Fluid
2.
Sci Total Environ ; 568: 306-318, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27300564

ABSTRACT

This study includes an environmental analysis of a membrane bioreactor (MBR), the objective being to quantitatively define the inventory of the resources consumed and estimate the emissions produced during its construction, operation and end-of-life deconstruction. The environmental analysis was done by the life cycle assessment (LCA) methodology, in order to establish with a broad perspective and in a rigorous and objective way the environmental footprint and the main environmental hotspots of the examined technology. Raw materials, equipment, transportation, energy use, as well as air- and waterborne emissions were quantified using as a functional unit, 1m(3) of urban wastewater. SimaPro 8.0.3.14 was used as the LCA analysis tool, and two impact assessment methods, i.e. IPCC 2013 version 1.00 and ReCiPe version 1.10, were employed. The main environmental hotspots of the MBR pilot unit were identified to be the following: (i) the energy demand, which is by far the most crucial parameter that affects the sustainability of the whole process, and (ii) the material of the membrane units. Overall, the MBR technology was found to be a sustainable solution for urban wastewater treatment, with the construction phase having a minimal environmental impact, compared to the operational phase. Moreover, several alternative scenarios and areas of potential improvement, such as the diversification of the electricity mix and the material of the membrane units, were examined, in order to minimize as much as possible the overall environmental footprint of this MBR system. It was shown that the energy mix can significantly affect the overall sustainability of the MBR pilot unit (i.e. up to 95% reduction of the total greenhouse gas emissions was achieved with the use of an environmentally friendly energy mix), and the contribution of the construction and operational phase to the overall environmental footprint of the system.


Subject(s)
Bioreactors , Carbon Footprint , Waste Disposal, Fluid/methods , Bioreactors/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...