Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1778(5): 1213-21, 2008 May.
Article in English | MEDLINE | ID: mdl-17963687

ABSTRACT

Resonance energy transfer (RET) between the tryptophan residues of lysozyme as donors and anthrylvinyl-labeled phosphatidylcholine (AV-PC) or phosphatidylglycerol (AV-PG) as acceptors has been examined to gain insight into molecular level details of the interactions of lysozyme with the lipid bilayers composed of PC with 10, 20, or 40 mol% PG. Energy transfer efficiency determined from the enhanced acceptor fluorescence was found to increase with content of the acidic lipid and surface coverage. The results of RET experiments performed with lipid vesicles containing 40 mol% PG were quantitatively analyzed in terms of the model of energy transfer in two-dimensional systems taking into account the distance dependence of orientation factor. Evidence for an interfacial location of the two predominant lysozyme fluorophores, Trp62 and Trp108, was obtained. The RET enhancement observed while employing AV-PG instead of AV-PC as an energy acceptor was interpreted as arising from the ability of lysozyme to bring about local demixing of the neutral and charged lipids in PC/PG model membranes.


Subject(s)
Lipids/chemistry , Muramidase/chemistry , Energy Transfer , Fluorescence Polarization , Fluorescent Dyes/chemistry
2.
Biophys J ; 93(1): 140-53, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17434939

ABSTRACT

Biological functions of lysozyme, including its antimicrobial, antitumor, and immune-modulatory activities have been suggested to be largely determined by the lipid binding properties of this protein. To gain further insight into these interactions on a molecular level the association of lysozyme to liposomes composed of either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine or its mixtures with 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-phosphatidylserine, or bovine heart cardiolipin was studied by a combination of fluorescence techniques. The characteristics of the adsorption of lysozyme to lipid bilayers were investigated using fluorescein 5'-isothiocyanate labeled protein, responding to membrane association by a decrease in fluorescence. Upon increasing the content of anionic phospholipids in lipid vesicles, the binding isotherms changed from Langmuir-like to sigmoidal. Using adsorption models based on scaled particle and double-layer theories, this finding was rationalized in terms of self-association of the membrane-bound protein. The extent of quenching of lysozyme tryptophan fluorescence by acrylamide decreased upon membrane binding, revealing a conformational transition for the protein upon its surface association, resulting in a diminished access of the fluorophore to the aqueous phase. Steady-state fluorescence anisotropy of bilayer-incorporated probe 1,6-diphenyl-1,3,5-hexatriene was measured at varying lipid-to-protein molar ratios. Lysozyme was found to increase acyl-chain order for liposomes with the content of acidic phospholipid exceeding 10 mol %. Both electrostatic and hydrophobic protein-lipid interactions can be concluded to modulate the aggregation behavior of lysozyme when bound to lipid bilayers. Modulation of lysozyme aggregation propensity by membrane binding may have important implications for protein fibrillogenesis in vivo. Disruption of membrane integrity by the aggregated protein species is likely to be the mechanism responsible for the cytotoxicity of lysozyme.


Subject(s)
Lipid Bilayers/chemistry , Models, Chemical , Models, Molecular , Muramidase/chemistry , Phospholipids/chemistry , Computer Simulation , Dimerization , Protein Binding , Protein Conformation
3.
Biophys Chem ; 128(1): 75-86, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17383795

ABSTRACT

The novel symmetric squarylium derivative SQ-1 has been synthesized and tested for its sensitivity to the formation of protein-lipid complexes. SQ-1 binding to the model membranes composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with anionic lipid cardiolipin (CL) in different molar ratios was found to be controlled mainly by hydrophobic interactions. Lysozyme (Lz) and ribonuclease A (RNase) exerted an influence on the probe association with lipid vesicles resulting presumably from the competition between SQ-1 and the proteins for bilayer free volume and modification of its properties. The magnitude of this effect was much higher for lysozyme which may stem from the amphipathy of protein alpha-helix involved in the membrane binding. Varying membrane composition provides evidence for the dye sensitivity to both hydrophobic and electrostatic protein-lipid interactions. Fluorescence anisotropy studies uncovered the restriction of SQ-1 rotational mobility in lipid environment in the presence of Lz and RNase being indicative of the incorporation of the proteins into bilayer interior. The results of binding, fluorescence quenching and kinetic experiments suggested lysozyme-induced local lipid demixing upon protein association with negatively charged membranes with threshold concentration of CL for the lipid demixing being 10 mol%.


Subject(s)
Membrane Lipids/chemistry , Membrane Proteins/chemistry , Animals , Chemical Phenomena , Chemistry, Physical , Fluorescence Polarization , Fluorescent Dyes/chemistry , Hydrophobic and Hydrophilic Interactions , In Vitro Techniques , Kinetics , Lipid Bilayers/chemistry , Liposomes/chemistry , Macromolecular Substances/chemistry , Magnetic Resonance Spectroscopy , Molecular Probes/chemistry , Muramidase/chemistry , Static Electricity
4.
J Fluoresc ; 17(1): 65-72, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17192821

ABSTRACT

The applicability of the two newly commercial available squaraine labels Square-670-NHS and Seta-635-NHS to exploring protein-lipid interactions has been evaluated. The labels were conjugated to lysozyme (Lz) (squaraine-lysozyme conjugates below referred to as Square-670-Lz and Seta-635-Lz), a structurally well-characterized small globular protein displaying the ability to interact both, electrostatically and hydrophobically with lipids. The lipid component of the model systems was represented by lipid vesicles composed of zwitterionic lipids egg yolk phosphatidylcholine (PC) and 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and their mixtures with anionic lipids either beef heart cardiolipin (CL) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), respectively. Fluorescence intensity of Square-670-Lz was found to decrease upon association with lipid bilayer, while the fluorescence intensity of Seta-635-Lz displayed more complex behavior depending on lipid-to-protein molar ratio. Covalent coupling of squaraine labels to lysozyme exerts different influence on the properties of dye-protein conjugate. It was suggested that Square-670-NHS covalent attachment to Lz molecule enhances protein propensity for self-association, while squaraine label Seta-635-NHS is sensitive to different modes of lysozyme-lipid interactions-within the L:P range 6-11, when hydrophobic protein-lipid interactions are predominant, an aggregation of membrane-bound protein molecules takes place, thereby decreasing the fluorescence intensity of Seta-635-Lz. At higher L:P values (from 22 to 148) when electrostatic interactions are enhanced fluorescence intensity of Seta-635-Lz increases with increasing lipid concentrations.


Subject(s)
Coloring Agents/chemistry , Cyclobutanes/chemistry , Lipid Bilayers/chemistry , Muramidase/chemistry , Phenols/chemistry , Animals , Cardiolipins/chemistry , Cattle , Egg Yolk/chemistry , Evaluation Studies as Topic , Hydrophobic and Hydrophilic Interactions , Liposomes , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Static Electricity
5.
J Fluoresc ; 16(4): 547-54, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16794868

ABSTRACT

The applicability of newly synthesized squarylium dye Sq to probing the changes in physical characteristics of lipid bilayer on the formation of protein-lipid complexes has been evaluated. Lipid vesicles composed of zwitterionic phospholipid phosphatidylcholine (PC) and its mixtures with positively charged detergent cetyltrimethylammonium bromide (CTAB), anionic phospholipid cardiolipin (CL), and cholesterol (Chol) were employed as lipid component of model membrane systems while protein constituent was represented by lysozyme (Lz). Fluorescence intensity of Sq was found to decrease on Lz association with lipid bilayer. This effect was observed in all kinds of model systems suggesting that Sq is sensitive to modification of lipid bilayer physical properties on hydrophobic protein-lipid interactions. It was found that Sq spectral response to variations in Chol content depends on relative contributions of electrostatic and hydrophobic components of Lz-membrane binding.


Subject(s)
Fluorescent Dyes/chemistry , Lipid Metabolism , Models, Biological , Proteins/metabolism , Cardiolipins/chemistry , Cetrimonium , Cetrimonium Compounds/chemistry , Cholesterol/chemistry , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Liposomes/chemistry , Liposomes/metabolism , Membrane Lipids/chemistry , Molecular Structure , Muramidase/chemistry , Muramidase/metabolism , Phosphatidylcholines/chemistry , Phospholipids/chemistry , Protein Binding , Proteins/chemistry , Spectrometry, Fluorescence
6.
J Fluoresc ; 16(1): 47-52, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16397827

ABSTRACT

The present study was undertaken to evaluate the sensitivity of newly synthesized squaraine dye 1 to the changes in lipid bilayer physical properties and compared it with the well-known dye 2. Partitioning of the dye 1 into lipid bilayer was found to be followed by significant increase of its fluorescence intensity and red-shift of emission maximum, while intensity of the dye 2 fluorescence increased only slightly on going from aqueous to lipidic environment. This suggests that dye 1 is more sensitive to the changes in membrane properties as compared to dye 2. Partition coefficients of the dye 1 have been determined for the model membranes composed of zwitterionic phospholipid phosphatidylcholine (PC) and its mixtures with positively charged detergent cetyltrimethylammonium bromide (CTAB), anionic phospholipid cardiolipin (CL), and sterol (Chol). The spectral responses of the dye 1 in different liposome media proved to correlate with the increase of bilayer polarity induced by Chol and CL or its decrease caused by CTAB. It was concluded that dye 1 can be used as fluorescent probe for examining membrane-related processes.


Subject(s)
Cyclobutanes/chemistry , Fluorescent Dyes/chemistry , Membranes/chemistry , Phenols/chemistry , Animals , Cardiolipins/chemistry , Cattle , Cetrimonium , Cetrimonium Compounds/chemistry , Chickens , Cholesterol/chemistry , Female , Lipid Bilayers/chemistry , Liposomes/chemistry , Models, Chemical , Molecular Structure , Phosphatidylcholines/chemistry , Phospholipids/chemistry , Sensitivity and Specificity , Spectrometry, Fluorescence , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...