Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 88(7): e0220921, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35311511

ABSTRACT

Bacterial strains belonging to the genus Rhodococcus are able to degrade various toxic organic compounds and tolerate high concentrations of metal(loid)s. We have previously shown that Rhodococcus aetherivorans BCP1 is resistant to various levels of the two arsenic inorganic species, arsenite [As(III)] and arsenate [As(V)]. However, while arsenite showed toxic effects at concentrations as low as 5 mM, arsenate at 30 mM boosted the growth rate of BCP1 cells and was toxic only at concentrations of >100 mM. Since such behavior could be linked to peculiar aspects of its metabolism, the transcriptomic analysis of BCP1 cells exposed to 5 mM As(III) and 30 mM As(V) was performed in this work. The aim was to clarify the mechanisms underlying the arsenic stress response of the two growth phenotypes in the presence of the two different oxyanions. The results revealed that As(III) induced higher activity of reactive oxygen species (ROS)-scavenging enzymes than As(V) in relation to the expression of enzymes involved in cellular damage recovery and redox buffers/cofactors (ergothioneine, mycofactocin, and mycothiol). Further, As(III) downregulated pathways related to cell division, while both oxyanions downregulated genes involved in glycolysis. Notably, As(V) induced the expression of enzymes participating in the synthesis of metallophores and rearranged the central and energetic metabolism, also inducing alternative pathways for ATP synthesis and glucose consumption. This study, in providing transcriptomic data on R. aetherivorans exposed to arsenic oxyanions, sheds some light on the plasticity of the rhodococcal response to arsenic stress, which may be important for the improvement of biotechnological applications. IMPORTANCE Members of the genus Rhodococcus show high metabolic versatility and the ability to tolerate/resist numerous stress conditions, including toxic metals. R. aetherivorans BCP1 is able to tolerate high concentrations of the two inorganic arsenic oxyanions, arsenite [As(III)] and arsenate [As(V)]. Despite the fact that BCP1 intracellularly converts As(V) into As(III), this strain responds very differently to the presence of these two oxyanions in terms of cell growth and toxic effects. Indeed, while As(III) is highly toxic, exposure to specific concentrations of As(V) seems to boost cell growth. In this work, we investigated the transcriptomic response, ATP synthesis, glucose consumption, and H2O2 degradation in BCP1 cells exposed to As(III) and As(V), inducing two different growth phenotypes. Our results give an overview of the transcriptional rearrangements associated with the dual response of BCP1 to the two oxyanions and provide novel insights into the energetic metabolism of Rhodococcus under arsenic stress.


Subject(s)
Arsenic , Rhodococcus , Adenosine Triphosphate/metabolism , Arsenic/metabolism , Arsenic/toxicity , Glucose/metabolism , Hydrogen Peroxide/metabolism , Rhodococcus/metabolism , Transcriptome
2.
Cell Death Dis ; 6: e2021, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26673666

ABSTRACT

Leber's hereditary optic neuropathy (LHON), the most frequent mitochondrial disease, is associated with mitochondrial DNA (mtDNA) point mutations affecting Complex I subunits, usually homoplasmic. This blinding disorder is characterized by incomplete penetrance, possibly related to several genetic modifying factors. We recently reported that increased mitochondrial biogenesis in unaffected mutation carriers is a compensatory mechanism, which reduces penetrance. Also, environmental factors such as cigarette smoking have been implicated as disease triggers. To investigate this issue further, we first assessed the relationship between cigarette smoke and mtDNA copy number in blood cells from large cohorts of LHON families, finding that smoking was significantly associated with the lowest mtDNA content in affected individuals. To unwrap the mechanism of tobacco toxicity in LHON, we exposed fibroblasts from affected individuals, unaffected mutation carriers and controls to cigarette smoke condensate (CSC). CSC decreased mtDNA copy number in all cells; moreover, it caused significant reduction of ATP level only in mutated cells including carriers. This implies that the bioenergetic compensation in carriers is hampered by exposure to smoke derivatives. We also observed that in untreated cells the level of carbonylated proteins was highest in affected individuals, whereas the level of several detoxifying enzymes was highest in carriers. Thus, carriers are particularly successful in reactive oxygen species (ROS) scavenging capacity. After CSC exposure, the amount of detoxifying enzymes increased in all cells, but carbonylated proteins increased only in LHON mutant cells, mostly from affected individuals. All considered, it appears that exposure to smoke derivatives has a more deleterious effect in affected individuals, whereas carriers are the most efficient in mitigating ROS rather than recovering bioenergetics. Therefore, the identification of genetic modifiers that modulate LHON penetrance must take into account also the exposure to environmental triggers such as tobacco smoke.


Subject(s)
DNA, Mitochondrial/genetics , Optic Atrophy, Hereditary, Leber/etiology , Reactive Oxygen Species/metabolism , Smoking/adverse effects , Smoking/genetics , DNA, Mitochondrial/metabolism , Female , Humans , Male , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Optic Atrophy, Hereditary, Leber/pathology , Oxidative Phosphorylation , Smoking/metabolism , Smoking/pathology
3.
Cell Death Dis ; 4: e663, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23764844

ABSTRACT

Mitochondrial biogenesis is an orchestrated process that presides to the regulation of the organelles homeostasis within a cell. We show that γ-rays, at doses commonly used in the radiation therapy for cancer treatment, induce an increase in mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence, in the presence of a functional p53. Although the main effector of the response to γ-rays is the p53-p21 axis, we demonstrated that mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a murine double minute 2 (MDM2)-mediated hypoxia-inducible factor 1α (HIF1α) degradation, leading to the release of peroxisome-proliferator activated receptor gamma co-activator 1ß inhibition by HIF1α, thus promoting mitochondrial biogenesis. Mimicking hypoxia by HIF1α stabilization, in fact, blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally, we also show in vivo that post-radiotherapy mitochondrial DNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of cell senescence.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mitochondria/radiation effects , Mitochondrial Turnover , Tumor Suppressor Protein p53/metabolism , Base Sequence , Binding Sites , Carrier Proteins/metabolism , Cell Shape , Cellular Senescence , DNA Copy Number Variations , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Gene Expression Regulation , Genome, Mitochondrial , HCT116 Cells , Humans , Mitochondria/metabolism , Molecular Sequence Data , Mutation, Missense , Promoter Regions, Genetic , Protein Stability , Proteolysis , Proto-Oncogene Proteins c-mdm2/metabolism , RNA-Binding Proteins , Response Elements , Tumor Suppressor Protein p53/genetics
4.
Cell Death Dis ; 2: e222, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-22030538

ABSTRACT

Mitochondrial dysfunction often leads to cell death and disease. We can now draw correlations between the dysfunction of one of the most important mitochondrial enzymes, NADH:ubiquinone reductase or complex I, and its structural organization thanks to the recent advances in the X-ray structure of its bacterial homologs. The new structural information on bacterial complex I provide essential clues to finally understand how complex I may work. However, the same information remains difficult to interpret for many scientists working on mitochondrial complex I from different angles, especially in the field of cell death. Here, we present a novel way of interpreting the bacterial structural information in accessible terms. On the basis of the analogy to semi-automatic shotguns, we propose a novel functional model that incorporates recent structural information with previous evidence derived from studies on mitochondrial diseases, as well as functional bioenergetics.


Subject(s)
Electron Transport Complex I/metabolism , Mitochondrial Diseases/pathology , Cell Death/physiology , Electron Transport Complex I/genetics , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism
5.
Cell Mol Life Sci ; 65(18): 2943-51, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18695940

ABSTRACT

Human thyroid carcinoma XTC.UC1 cells harbor a homoplasmic frameshift mutation in the MT-ND1 subunit of respiratory complex I. When forced to use exclusively oxidative phosphorylation for energy production by inhibiting glycolysis, these cells triggered a caspase-independent cell death pathway, which was associated to a significant imbalance in glutathione homeostasis and a cleavage of the actin cytoskeleton. Overexpression of the anti-apoptotic Bcl-2 protein significantly increased the level of endogenous reduced glutathione, thus preventing its oxidation after the metabolic stress. Furthermore, Bcl-2 completely inhibited actin cleavage and increased cell adhesion, but was unable to improve cellular viability. Similar effects were obtained when XTC.UC1 cells were incubated with exogenous glutathione. We hence propose that Bcl-2 can safeguard cytoskeletal stability through an antioxidant function.


Subject(s)
Antioxidants/metabolism , Cytoskeleton/metabolism , Electron Transport Complex I/physiology , Mutation , Proto-Oncogene Proteins c-bcl-2/metabolism , Actins/metabolism , Cell Line, Tumor , Cell Shape , Glutathione/metabolism , Homeostasis , Humans , Protein Subunits/genetics , Protein Subunits/metabolism , Thyroid Neoplasms
6.
Neurology ; 70(10): 762-70, 2008 Mar 04.
Article in English | MEDLINE | ID: mdl-18216301

ABSTRACT

OBJECTIVE: To investigate the mechanisms underlying myoclonus in Leber hereditary optic neuropathy (LHON). METHODS: Five patients and one unaffected carrier from two Italian families bearing the homoplasmic 11778/ND4 and 3460/ND1 mutations underwent a uniform investigation including neurophysiologic studies, muscle biopsy, serum lactic acid after exercise, and muscle ((31)P) and cerebral ((1)H) magnetic resonance spectroscopy (MRS). Biochemical investigations on fibroblasts and complete mitochondrial DNA (mtDNA) sequences of both families were also performed. RESULTS: All six individuals had myoclonus. In spite of a normal EEG background and the absence of giant SEPs and C reflex, EEG-EMG back-averaging showed a preceding jerk-locked EEG potential, consistent with a cortical generator of the myoclonus. Specific comorbidities in the 11778/ND4 family included muscular cramps and psychiatric disorders, whereas features common to both families were migraine and cardiologic abnormalities. Signs of mitochondrial proliferation were seen in muscle biopsies and lactic acid elevation was observed in four of six patients. (31)P-MRS was abnormal in five of six patients and (1)H-MRS showed ventricular accumulation of lactic acid in three of six patients. Fibroblast ATP depletion was evident at 48 hours incubation with galactose in LHON/myoclonus patients. Sequence analysis revealed haplogroup T2 (11778/ND4 family) and U4a (3460/ND1 family) mtDNAs. A functional role for the non-synonymous 4136A>G/ND1, 9139G>A/ATPase6, and 15773G>A/cyt b variants was supported by amino acid conservation analysis. CONCLUSIONS: Myoclonus and other comorbidities characterized our Leber hereditary optic neuropathy (LHON) families. Functional investigations disclosed a bioenergetic impairment in all individuals. Our sequence analysis suggests that the LHON plus phenotype in our cases may relate to the synergic role of mtDNA variants.


Subject(s)
DNA, Mitochondrial/genetics , Energy Metabolism/genetics , Genetic Predisposition to Disease/genetics , Mutation/genetics , Myoclonus/genetics , Optic Atrophy, Hereditary, Leber/genetics , Adenosine Triphosphate/deficiency , Adult , DNA Mutational Analysis , Electroencephalography , Electromyography , Female , Gene Frequency , Genetic Testing , Genotype , Humans , Inheritance Patterns/genetics , Magnetic Resonance Spectroscopy , Male , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Myoclonus/physiopathology , Optic Atrophy, Hereditary, Leber/complications , Optic Atrophy, Hereditary, Leber/physiopathology , Pedigree , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL
...