Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 21(4): 2368-2375, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33500053

ABSTRACT

In this work, the sorption of TCC in natural aqueous solutions with different chemical compositions, on amended sediments with carbon nanomaterials such as MWCNTs and C60, pristine and weathered is presented. The variation of the temperature, the composition of the natural water, the compositions of the sediment were studied, the results were correlated for a better understanding of the possible effects of the carbon nanomaterials in the environment.

2.
Environ Geochem Health ; 42(2): 513-529, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31363944

ABSTRACT

The work presents the historical evolution, objectives, goals, concepts, chemical and radiometric methods, results and conclusions for salt waters and natural peloids used in pelotherapy. This study assesses chemical composition, natural radioactivity concentrations and the radiological hazard in peloid and salt water samples, from ten places in the Techirghiol Lake from Romania. Pelotherapy is a very important procedure, and thus, the materials used for this purpose must be well characterized to guaranty safety use. Concentrations of elements such as Sr, Ba, Mn, Fe, Sb, Zn, Cu, Pb, Ti, Ni, Cr, As have been measured using ICP-OES analytical technique. The natural radionuclides such as 238U, 226Ra, 232Th and 40K have been determined by gamma-ray spectrometry. The average activity concentrations were of 0.48 ± 0.10 Bq/kg for 238U, 0.60 ± 0.10 Bq/kg for 226Ra, 0.30 ± 0.08 Bq/kg for 232Th and 17.5 ± 1.3 Bq/kg for 40K for salt water samples. Also, the mean activity concentrations for peloids were: 5.70 ± 1.00 Bq/kg for 238U, 6.85 ± 1.60 Bq/kg for 232Th, 15.3 ± 3.7 Bq/kg for 226Ra and 95.8 ± 5.5 Bq/kg for 40K. The results from this study contribute to the identification of possible contaminants in the salt water and peloid, and their association with the potential ecological and human health risk. In this context, of using salt water and peloid in a relatively long treatment period, several radiological indices have been calculated, to determine if the radionuclide's content can be also harmful to human health. The assessment indicates that humans are not exposed to concentrations of metal contaminants higher than the international recommended values.


Subject(s)
Background Radiation , Lakes/analysis , Lakes/chemistry , Mud Therapy , Radioisotopes/analysis , Gamma Rays , Geologic Sediments/analysis , Humans , Hydrogen-Ion Concentration , Metals/analysis , Potassium Radioisotopes/analysis , Radiation Monitoring/methods , Radium/analysis , Romania , Salinity , Spectrometry, Gamma , Temperature , Thorium/analysis , Uranium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...