Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cancers (Basel) ; 16(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38473367

ABSTRACT

Proton therapy (PT) is emerging as an effective and less toxic alternative to conventional X-ray-based photon therapy (XRT) for patients with advanced head and neck squamous cell carcinomas (HNSCCs) owing to its clustered dose deposition dosimetric characteristics. For optimal efficacy, cancer therapies, including PT, must elicit a robust anti-tumor response by effector and cytotoxic immune cells in the tumor microenvironment (TME). While tumor-derived exosomes contribute to immune cell suppression in the TME, information on the effects of PT on exosomes and anti-tumor immune responses in HNSCC is not known. In this study, we generated primary HNSCC cells from tumors resected from HNSCC patients, irradiated them with 5 Gy PT or XRT, and isolated exosomes from cell culture supernatants. HNSCC cells exposed to PT produced 75% fewer exosomes than XRT- and non-irradiated HNSCC cells. This effect persisted in proton-irradiated cells for up to five days. Furthermore, we observed that exosomes from proton-irradiated cells were identical in morphology and immunosuppressive effects (suppression of IFN-γ release by peripheral blood mononuclear cells) to those of photon-irradiated cells. Our results suggest that PT limits the suppressive effect of exosomes on cancer immune surveillance by reducing the production of exosomes that can inhibit immune cell function.

2.
bioRxiv ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38076805

ABSTRACT

In non-small cell lung cancer (NSCLC) treatment, targeted therapies benefit only a subset of NSCLC, while radiotherapy responses are not durable and toxicity limits therapy. We find that a GABA(A) receptor activator, AM-101, impairs viability and clonogenicity of NSCLC primary and brain metastatic cells. Employing an ex vivo 'chip', AM-101 is as efficacious as the chemotherapeutic docetaxel, which is used with radiotherapy for advanced-stage NSCLC. In vivo , AM-101 potentiates radiation, including conferring a survival benefit to mice bearing NSCLC intracranial tumors. GABA(A) receptor activation stimulates a selective-autophagic response via multimerization of GABA(A) Receptor-Associated Protein (GABARAP), stabilization of mitochondrial receptor Nix, and utilization of ubiquitin-binding protein p62. A targeted-peptide disrupting Nix binding to GABARAP inhibits AM-101 cytotoxicity. This supports a model of GABA(A) receptor activation driving a GABARAP-Nix multimerization axis triggering autophagy. In patients receiving radiotherapy, GABA(A) receptor activation may improve tumor control while allowing radiation dose de-intensification to reduce toxicity. Highlights: Activating GABA(A) receptors intrinsic to lung primary and metastatic brain cancer cells triggers a cytotoxic response. GABA(A) receptor activation works as well as chemotherapeutic docetaxel in impairing lung cancer viability ex vivo . GABA(A) receptor activation increases survival of mice bearing lung metastatic brain tumors.A selective-autophagic response is stimulated by GABA(A) receptor activation that includes multimerization of GABARAP and Nix.Employing a new nanomolar affinity peptide that abrogates autophagosome formation inhibits cytotoxicity elicited by GABA(A) receptor activation.

3.
Sci Rep ; 13(1): 6191, 2023 04 16.
Article in English | MEDLINE | ID: mdl-37062767

ABSTRACT

Ultrasound-enhanced delivery of therapeutic-loaded echogenic liposomes is under development for vascular applications using the EkoSonic Endovascular System. In this study, fibrin-targeted echogenic liposomes loaded with an anti-inflammatory agent were characterized before and after infusion through an EkoSonic catheter. Cavitation activity was nucleated by Definity or fibrin-targeted, drug-loaded echogenic liposomes infused and insonified with EkoSonic catheters. Passive cavitation imaging was used to quantify and map bubble activity in a flow phantom mimicking porcine arterial flow. Cavitation was sustained during 3-min infusions of Definity or echogenic liposomes along the distal 6 cm treatment zone of the catheter. Though the EkoSonic catheter was not designed specifically for cavitation nucleation, infusion of drug-loaded echogenic liposomes can be employed to trigger and sustain bubble activity for enhanced intravascular drug delivery.


Subject(s)
Fluorocarbons , Liposomes , Swine , Animals , Contrast Media , Ultrasonography
4.
J Imaging ; 8(2)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35200720

ABSTRACT

A method for generating fluoroscopic (time-varying) volumetric images using patient-specific motion models derived from four-dimensional cone-beam CT (4D-CBCT) images was developed. 4D-CBCT images acquired immediately prior to treatment have the potential to accurately represent patient anatomy and respiration during treatment. Fluoroscopic 3D image estimation is performed in two steps: (1) deriving motion models and (2) optimization. To derive motion models, every phase in a 4D-CBCT set is registered to a reference phase chosen from the same set using deformable image registration (DIR). Principal components analysis (PCA) is used to reduce the dimensionality of the displacement vector fields (DVFs) resulting from DIR into a few vectors representing organ motion found in the DVFs. The PCA motion models are optimized iteratively by comparing a cone-beam CT (CBCT) projection to a simulated projection computed from both the motion model and a reference 4D-CBCT phase, resulting in a sequence of fluoroscopic 3D images. Patient datasets were used to evaluate the method by estimating the tumor location in the generated images compared to manually defined ground truth positions. Experimental results showed that the average tumor mean absolute error (MAE) along the superior-inferior (SI) direction and the 95th percentile in two patient datasets were 2.29 and 5.79 mm for patient 1, and 1.89 and 4.82 mm for patient 2. This study demonstrated the feasibility of deriving 4D-CBCT-based PCA motion models that have the potential to account for the 3D non-rigid patient motion and localize tumors and other patient anatomical structures on the day of treatment.

5.
Int J Radiat Oncol Biol Phys ; 109(4): 1040-1053, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33289666

ABSTRACT

PURPOSE: Most patients with metastatic melanoma show variable responses to radiation therapy and do not benefit from immune checkpoint inhibitors. Improved strategies for combination therapy that leverage potential benefits from radiation therapy and immune checkpoint inhibitors are critical. METHODS AND MATERIALS: We analyzed metastatic melanoma tumors in the TCGA cohort for expression of genes coding for subunits of type A γ-aminobutyric acid (GABA) receptor (GABAAR), a chloride ion channel and major inhibitory neurotransmitter receptor. Electrophysiology was used to determine whether melanoma cells possess intrinsic GABAAR activity. Melanoma cell viability studies were conducted to test whether enhancing GABAAR mediated chloride transport using benzodiazepine-impaired viability. A syngeneic melanoma mouse model was used to assay the effect of benzodiazepine on tumor volume and its ability to potentiate radiation therapy or immunotherapy. Treated tumors were analyzed for changes in gene expression by RNA sequencing and presence of tumor-infiltrating lymphocytes by flow cytometry. RESULTS: Genes coding for subunits of GABAARs express functional GABAARs in melanoma cells. By enhancing GABAAR-mediated anion transport, benzodiazepines depolarize melanoma cells and impair their viability. In vivo, benzodiazepine alone reduces tumor growth and potentiates radiation therapy and α-PD-L1 antitumor activity. The combination of benzodiazepine, radiation therapy, and α-PD-L1 results in near complete regression of treated tumors and a potent abscopal effect, mediated by increased infiltration of polyfunctional CD8+ T cells. Treated tumors show expression of cytokine-cytokine receptor interactions and overrepresentation of p53 signaling. CONCLUSIONS: This study identifies an antitumor strategy combining radiation and/or an immune checkpoint inhibitor with modulation of GABAARs in melanoma using benzodiazepine.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Melanoma/therapy , Receptors, GABA-A/physiology , T-Lymphocytes/immunology , Animals , Benzodiazepines/pharmacology , Benzodiazepines/therapeutic use , Cell Proliferation/drug effects , Combined Modality Therapy , Female , Humans , Melanoma/pathology , Membrane Proteins/analysis , Mice , Mice, Inbred C57BL , Radiation-Sensitizing Agents/pharmacology , Receptors, GABA-A/analysis
6.
Radiother Oncol ; 155: 293-303, 2021 02.
Article in English | MEDLINE | ID: mdl-33096164

ABSTRACT

BACKGROUND AND PURPOSE: Knowledge of biological responses to proton therapy (PT) in comparison to X-ray remains in its infancy. Identification of PT specific molecular signals is an important opportunity for the discovery of biomarkers and synergistic drugs to advance clinical application. Since PT is used for the treatment of lymphoma, we report here transcriptomic responses of lymphoma cell lines to PT vs X-ray and identify potential therapeutic targets. MATERIALS AND METHODS: Two lymphoma cell lines of human (BL41) and murine (J3D) origin were irradiated by X-ray and PT. Differential transcriptome regulation was quantified by RNA sequencing for each radiation type at 12 hours post irradiation. Gene-set enrichment analysis revealed deregulated molecular pathways and putative targets for lymphoma cell sensitization to PT. RESULTS: Transcriptomic gene set enrichment analyses uncovered pathways that contribute to the unfolded protein response (UPR) and mitochondrial transport. Functional validation at multiple time points demonstrated increased UPR activation and decreased protein translation, perhaps due to increased oxidative stress and oxidative protein damage after PT. PPARgamma was identified as a potential regulator of the PT transcriptomic response. Inhibition of PPARgamma by two compounds, T0070907 and SR2595, sensitized lymphoma cells to PT. CONCLUSIONS: Proton vs X-ray radiation leads to the transcriptional regulation of a specific subset of genes in line with diminished protein translation and UPR activation that may be due to oxidative stress. This study demonstrates that different radiation qualities trigger distinct cellular responses in lymphoma cells, and identifies PPARgamma inhibition as a potential strategy for the sensitization of lymphoma to PT.


Subject(s)
Lymphoma , Proton Therapy , Animals , Humans , Lymphoma/genetics , Mice , Protons , Transcriptome , X-Rays
7.
Biomed Phys Eng Express ; 6(3): 035020, 2020 04 09.
Article in English | MEDLINE | ID: mdl-33438665

ABSTRACT

The aim of this paper is to quantify the day-to-day variations of motion models derived from pre-treatment 4-dimensional cone beam CT (4DCBCT) fractions for lung cancer stereotactic body radiotherapy (SBRT) patients. Motion models are built by (1) applying deformable image registration (DIR) on each 4DCBCT image with respect to a reference image from that day, resulting in a set of displacement vector fields (DVFs), and (2) applying principal component analysis (PCA) on the DVFs to obtain principal components representing a motion model. Variations were quantified by comparing the PCA eigenvectors of the motion model built from the first day of treatment to the corresponding eigenvectors of the other motion models built from each successive day of treatment. Three metrics were used to quantify the variations: root mean squared (RMS) difference in the vectors, directional similarity, and an introduced metric called the Euclidean Model Norm (EMN). EMN quantifies the degree to which a motion model derived from the first fraction can represent the motion models of subsequent fractions. Twenty-one 4DCBCT scans from five SBRT patient treatments were used in this retrospective study. Experimental results demonstrated that the first two eigenvectors of motion models across all fractions have smaller RMS (0.00017), larger directional similarity (0.528), and larger EMN (0.678) than the last three eigenvectors (RMS: 0.00025, directional similarity: 0.041, and EMN: 0.212). The study concluded that, while the motion model eigenvectors varied from fraction to fraction, the first few eigenvectors were shown to be more stable across treatment fractions than others. This supports the notion that a pre-treatment motion model built from the first few PCA eigenvectors may remain valid throughout a treatment course. Future work is necessary to quantify how day-to-day variations in these models will affect motion reconstruction accuracy for specific clinical tasks.


Subject(s)
Cone-Beam Computed Tomography/methods , Four-Dimensional Computed Tomography/methods , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Radiosurgery/methods , Algorithms , Computer Simulation , Humans , Motion , Principal Component Analysis , Radiotherapy Planning, Computer-Assisted/methods , Reproducibility of Results , Respiration , Retrospective Studies
8.
Med Phys ; 46(8): 3627-3639, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31087359

ABSTRACT

PURPOSE: To develop and evaluate a method of reconstructing a patient- and treatment day- specific volumetric image and motion model from free-breathing cone-beam projections and respiratory surrogate measurements. This Motion-Compensated Simultaneous Algebraic Reconstruction Technique (MC-SART) generates and uses a motion model derived directly from the cone-beam projections, without requiring prior motion measurements from 4DCT, and can compensate for both inter- and intrabin deformations. The motion model can be used to generate images at arbitrary breathing points, which can be used for estimating volumetric images during treatment delivery. METHODS: The MC-SART was formulated using simultaneous image reconstruction and motion model estimation. For image reconstruction, projections were first binned according to external surrogate measurements. Projections in each bin were used to reconstruct a set of volumetric images using MC-SART. The motion model was estimated based on deformable image registration between the reconstructed bins, and least squares fitting to model parameters. The model was used to compensate for motion in both projection and backprojection operations in the subsequent image reconstruction iterations. These updated images were then used to update the motion model, and the two steps were alternated between. The final output is a volumetric reference image and a motion model that can be used to generate images at any other time point from surrogate measurements. RESULTS: A retrospective patient dataset consisting of eight lung cancer patients was used to evaluate the method. The absolute intensity differences in the lung regions compared to ground truth were 50.8 ± 43.9 HU in peak exhale phases (reference) and 80.8 ± 74.0 in peak inhale phases (generated). The 50th percentile of voxel registration error of all voxels in the lung regions with >5 mm amplitude was 1.3 mm. The MC-SART was also applied to measured patient cone-beam projections acquired with a linac-mounted CBCT system. Results from this patient data demonstrate the feasibility of MC-SART and showed qualitative image quality improvements compared to other state-of-the-art algorithms. CONCLUSION: We have developed a simultaneous image reconstruction and motion model estimation method that uses Cone-beam computed tomography (CBCT) projections and respiratory surrogate measurements to reconstruct a high-quality reference image and motion model of a patient in treatment position. The method provided superior performance in both HU accuracy and positional accuracy compared to other existing methods. The resultant reference image and motion model can be combined with respiratory surrogate measurements to generate volumetric images representing patient anatomy at arbitrary time points.


Subject(s)
Cone-Beam Computed Tomography , Image Processing, Computer-Assisted/methods , Movement , Respiration , Four-Dimensional Computed Tomography , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/physiopathology , Lung Neoplasms/radiotherapy , Retrospective Studies
9.
Radiat Oncol ; 13(1): 240, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30514348

ABSTRACT

BACKGROUND: Advanced clinical applications, such as dose accumulation and adaptive radiation therapy, require deformable image registration (DIR) algorithms capable of voxel-wise accurate mapping of treatment dose or functional imaging. By utilizing a multistage deformable phantom, the authors investigated scenarios where biomechanical refinement method (BM-DIR) may be better than the pure image intensity based deformable registration (IM-DIR). METHODS: The authors developed a biomechanical-model based DIR refinement method (BM-DIR) to refine the deformable vector field (DVF) from any initial intensity-based DIR (IM-DIR). The BM-DIR method was quantitatively evaluated on a novel phantom capable of ten reproducible gradually-increasing deformation stages using the urethra tube as a surrogate. The internal DIR accuracy was inspected in term of the Dice similarity coefficient (DSC), Hausdorff and mean surface distance as defined in of the urethra structure inside the phantom and compared with that of the initial IM-DIR under various stages of deformation. Voxel-wise deformation vector discrepancy and Jacobian regularity were also inspected to evaluate the output DVFs. In addition to phantom, two pairs of Head&Neck patient MR images with expert-defined landmarks inside parotids were utilized to evaluate the BM-DIR accuracy with target registration error (TRE). RESULTS: The DSC and surface distance measures of the inner urethra tube indicated the BM-DIR method can improve the internal DVF accuracy on masked MR images for the phases of a large degree of deformation. The smoother Jacobian distribution from the BM-DIR suggests more physically-plausible internal deformation. For H&N cancer patients, the BM-DIR improved the TRE from 0.339 cm to 0.210 cm for the landmarks inside parotid on the masked MR images. CONCLUSIONS: We have quantitatively demonstrated on a multi-stage physical phantom and limited patient data that the proposed BM-DIR can improve the accuracy inside solid organs with large deformation where distinctive image features are absent.


Subject(s)
Algorithms , Head and Neck Neoplasms/radiotherapy , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Prostate/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Urethra/radiation effects , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/pathology , Humans , Male , Prostate/diagnostic imaging , Prostate/pathology , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Tomography, X-Ray Computed/methods , Urethra/diagnostic imaging , Urethra/pathology
10.
Int J Radiat Oncol Biol Phys ; 91(1): 124-32, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25442337

ABSTRACT

PURPOSE: To compare toxicity after stereotactic body radiation therapy (SBRT) for "central" tumors-within 2 cm of the proximal bronchial tree or with planning tumor volume (PTV) touching mediastinum-versus noncentral ("peripheral") lung tumors. METHODS AND MATERIALS: From November 2005 to January 2011, 229 tumors (110 central, 119 peripheral; T1-3N0M0 non-small-cell lung cancer and limited lung metastases) in 196 consecutive patients followed prospectively at a single institution received moderate-dose SBRT (48-60 Gy in 4-5 fractions [biologic effective dose=100-132 Gy, α/ß=10]) using 4-dimensional planning, online image-guided radiation therapy, and institutional dose constraints. Clinical adverse events (AEs) were graded prospectively at clinical and radiographic follow-up using Common Terminology Criteria for Adverse Events version 3.0. Pulmonary function test (PFT) decline was graded as 2 (25%-49.9% decline), 3 (50.0%-74.9% decline), or 4 (≥75.0% decline). Central/peripheral location was assessed retrospectively on planning CT scans. Groups were compared after propensity score matching. Characteristics were compared with χ(2) and 2-tailed t tests, adverse events with χ(2) test-for-trend, and cumulative incidence using competing risks analysis (Gray's test). RESULTS: With 79 central and 79 peripheral tumors matched, no differences in AEs were observed after 17 months median follow-up. Two-year cumulative incidences of grade ≥2 pain, musculoskeletal, pulmonary, and skin AEs were 14%, 5%, 6%, and 10% (central) versus 19%, 10%, 10%, and 3% (peripheral), respectively (P=.31, .38, .70, and .09). Grade ≥2 cardiovascular, gastrointestinal, and central nervous system AEs were rare (<1%). Two-year incidences of grade ≥2 clinical AEs (28% vs 25%, P=.79), grade ≥2 PFT decline (36% vs 34%, P=.94), grade ≥3 clinical AEs (3% vs 7%, P=.48), and grade ≥3 PFT decline (0 vs 10%, P=.11) were similar for central versus peripheral tumors, respectively. Pooled 2-year incidences of grades 4 and 5 AEs were <1% and 0%, respectively, in both the prematched and matched groups. CONCLUSION: Moderate-dose SBRT with these techniques yields a similarly safe toxicity profile for both central and peripheral lung tumors.


Subject(s)
Carcinoma, Non-Small-Cell Lung/surgery , Lung Neoplasms/surgery , Radiation Injuries/epidemiology , Radiosurgery/adverse effects , Adult , Aged , Aged, 80 and over , Algorithms , Carcinoma, Non-Small-Cell Lung/pathology , Chi-Square Distribution , Dose Fractionation, Radiation , Female , Humans , Incidence , Lung Neoplasms/pathology , Male , Mediastinum/pathology , Middle Aged , Organs at Risk/radiation effects , Pain/etiology , Propensity Score , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/adverse effects , Radiotherapy, Image-Guided/methods , Respiratory Function Tests , Sex Factors , Tumor Burden , Young Adult
11.
Med Phys ; 41(3): 031911, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24593729

ABSTRACT

PURPOSE: To evaluate the accuracy and reliability of three target localization methods for image guided motion management in lung cancer radiotherapy. METHODS: Three online image localization methods, including (1) 2D method based on 2D cone beam (CB) projection images, (2) 3D method using 3D cone beam CT (CBCT) imaging, and (3) 4D method using 4D CBCT imaging, have been evaluated using a moving phantom controlled by (a) 1D theoretical breathing motion curves and (b) 3D target motion patterns obtained from daily treatment of 3 lung cancer patients. While all methods are able to provide target mean position (MP), the 2D and 4D methods can also provide target motion standard deviation (SD) and excursion (EX). For each method, the detected MP/SD/EX values are compared to the analytically calculated actual values to calculate the errors. The MP errors are compared among three methods and the SD/EX errors are compared between the 2D and 4D methods. In the theoretical motion study (a), the dependency of MP/SD/EX error on EX is investigated with EX varying from 2.0 cm to 3.0 cm with an increment step of 0.2 cm. In the patient motion study (b), the dependency of MP error on target sizes (2.0 cm and 3.0 cm), motion patterns (four motions per patient) and EX variations is investigated using multivariant linear regression analysis. RESULTS: In the theoretical motion study (a), the MP detection errors are -0.2 ± 0.2, -1.5 ± 1.1, and -0.2 ± 0.2 mm for 2D, 3D, and 4D methods, respectively. Both the 2D and 4D methods could accurately detect motion pattern EX (error < 1.2 mm) and SD (error < 1.0 mm). In the patient motion study (b), MP detection error vector (mm) with the 2D method (0.7 ± 0.4) is found to be significantly less than with the 3D method (1.7 ± 0.8,p < 0.001) and the 4D method (1.4 ± 1.0, p < 0.001) using paired t-test. However, no significant difference is found between the 4D method and the 3D method. Based on multivariant linear regression analysis, the variances of MP error in SI direction explained by target sizes, motion patterns, and EX variations are 9% with the 2D method, 74.4% with the 3D method, and 27% with the 4D method. The EX/SD detection errors are both < 1.0 mm for the 2D method and < 2.0 mm for the 4D method. CONCLUSIONS: The 2D method provides the most accurate MP detection regardless of the motion pattern variations, while its performance is limited by the accuracy of target identification in the projection images. The 3D method causes the largest error in MP determination, and its accuracy significantly depends on target sizes, motion patterns, and EX variations. The 4D method provides moderate MP detection results, while its accuracy relies on a regular motion pattern. In addition, the 2D and 4D methods both provide accurate measurement of the motion SD/EX, providing extra information for motion management.


Subject(s)
Lung Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Radiotherapy/methods , Algorithms , Cone-Beam Computed Tomography/methods , Four-Dimensional Computed Tomography/methods , Humans , Imaging, Three-Dimensional , Linear Models , Lung/diagnostic imaging , Movement , Particle Accelerators , Phantoms, Imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Respiration
12.
Med Phys ; 40(10): 101710, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24089900

ABSTRACT

PURPOSE: To develop a real-time markerless 3D tumor tracking using kilovoltage (kV) cone-beam CT (CBCT) projection images during volumetric modulated arc therapy (VMAT) treatment of lung tumors. METHODS: The authors have developed a method to identify the position of lung tumors during VMAT treatment, where the current mean 3D position is detected and subsequently the real time 3D position is obtained. The mean position is evaluated by iteratively minimizing an observation error function between the tumor coordinate detected in the imaging plane and the coordinate of the corresponding projection of the estimated mean position. The 3D trajectory is reconstructed using the same optimization formalism, where an observation error function is minimized for tumor positions confined within a predefined amplitude bin as determined from the superior-inferior tumor motion. Dynamic phantom experiments were performed and image data acquired during patient treatment were analyzed to characterize the reconstruction ability of the proposed method. RESULTS: The proposed algorithm needs to acquire kV projection data until a certain gantry angle is passed through, termed the black-out angle, before accurate estimation mean 3D tumor position is possible. The black-out angle for the mean position method is approximately 20°, while for the 3D trajectory reconstruction an additional ≈ 15° is required. The mean 3D position and 3D trajectory reconstruction are accurate within ± 0.5 mm. CONCLUSIONS: The authors present a real-time tracking framework to locate lung tumors during VMAT treatment using an optimization algorithm applied to CBCT kV projection images taken concomitantly with the treatment delivery. The authors' technique does not introduce significant additional dose and can be used for real-time treatment monitoring.


Subject(s)
Algorithms , Imaging, Three-Dimensional/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Cone-Beam Computed Tomography , Four-Dimensional Computed Tomography , Humans , Imaging, Three-Dimensional/instrumentation , Phantoms, Imaging , Radiotherapy, Intensity-Modulated/instrumentation , Time Factors
13.
Med Phys ; 40(8): 081909, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23927323

ABSTRACT

PURPOSE: To accelerate iterative algebraic reconstruction algorithms using a cylindrical image grid. METHODS: Tetrahedron beam computed tomography (TBCT) is designed to overcome the scatter and detector problems of cone beam computed tomography (CBCT). Iterative algebraic reconstruction algorithms have been shown to mitigate approximate reconstruction artifacts that appear at large cone angles, but clinical implementation is limited by their high computational cost. In this study, a cylindrical voxelization method on a cylindrical grid is developed in order to take advantage of the symmetries of the cylindrical geometry. The cylindrical geometry is a natural fit for the circular scanning trajectory employed in volumetric CT methods such as CBCT and TBCT. This method was implemented in combination with the simultaneous algebraic reconstruction technique (SART). Both two- and three-dimensional numerical phantoms as well as a patient CT image were utilized to generate the projection sets used for reconstruction. The reconstructed images were compared to the original phantoms using a set of three figures of merit (FOM). RESULTS: The cylindrical voxelization on a cylindrical reconstruction grid was successfully implemented in combination with the SART reconstruction algorithm. The FOM results showed that the cylindrical reconstructions were able to maintain the accuracy of the Cartesian reconstructions. In three dimensions, the cylindrical method provided better accuracy than the Cartesian methods. At the same time, the cylindrical method was able to provide a speedup factor of approximately 40 while also reducing the system matrix storage size by 2 orders of magnitude. CONCLUSIONS: TBCT image reconstruction using a cylindrical image grid was able to provide a significant improvement in the reconstruction time and a more compact system matrix for storage on the hard drive and in memory while maintaining the image quality provided by the Cartesian voxelization on a Cartesian grid.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Cone-Beam Computed Tomography , Humans , Time Factors
14.
Int J Radiat Oncol Biol Phys ; 82(4): 1541-8, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-21664070

ABSTRACT

PURPOSE: To investigate the impact of primary tumor and involved lymph node (LN) geometry (centroid, shape, volume) on internal target volume (ITV) throughout treatment for locally advanced non-small cell lung cancer using weekly four-dimensional computed tomography (4DCT). METHODS AND MATERIALS: Eleven patients with advanced non-small cell lung cancer were treated using image-guided radiotherapy with acquisition of weekly 10-Phase 4DCTs (n = 51). Initial ITV was based on planning 4DCT. Master-ITV incorporated target geometry across the entire treatment (all 4DCTs). Geographic miss was defined as the % Master-ITV positioned outside of the initial planning ITV after registration is complete. Registration strategies considered were bony (B), primary tumor soft tissue alone (T), and registration based on primary tumor and involved LNs (T_LN). RESULTS: The % geographic miss for the primary tumor, mediastinal, and hilar lymph nodes based on each registration strategy were (1) B: 30%, 30%, 30%; (2) T: 21%, 40%, 36%; and (3) T_LN: 26%, 26%, 27%. Mean geographic expansions to encompass 100% of the primary tumor and involved LNs were 1.2 ± 0.7 cm and 0.8 ± 0.3 cm, respectively, for B and T_LN. Primary and involved LN expansions were 0.7 ± 0.5 cm and 1.1 ± 0.5 cm for T. CONCLUSION: T is best for solitary targets. When treatments include primary tumor and LNs, B and T_LN provide more comprehensive geographic coverage. We have identified high % geographic miss when considering multiple registration strategies. The dosimetric implications are the subject of future study.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Four-Dimensional Computed Tomography , Lung Neoplasms/radiotherapy , Lymph Nodes/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Aged , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lymph Nodes/pathology , Male , Mediastinum/diagnostic imaging , Middle Aged , Movement , Prospective Studies
15.
J Appl Clin Med Phys ; 12(4): 3502, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22089005

ABSTRACT

For PET/CT, fast CT acquisition time can lead to errors in attenuation correction, particularly at the lung/diaphragm interface. Gated 4D PET can reduce motion artifacts, though residual artifacts may persist depending on the CT dataset used for attenuation correction. We performed phantom studies to evaluate 4D PET images of targets near a density interface using three different methods for attenuation correction: a single 3D CT (3D CTAC), an averaged 4D CT (CINE CTAC), and a fully phase matched 4D CT (4D CTAC). A phantom was designed with two density regions corresponding to diaphragm and lung. An 8 mL sphere phantom loaded with 18F-FDG was used to represent a lung tumor and background FDG included at an 8:1 ratio. Motion patterns of sin(x) and sin4(x) were used for dynamic studies. Image data was acquired using a GE Discovery DVCT-PET/CT scanner. Attenuation correction methods were compared based on normalized recovery coefficient (NRC), as well as a novel quantity "fixed activity volume" (FAV) introduced in our report. Image metrics were compared to those determined from a 3D PET scan with no motion present (3D STATIC). Values of FAV and NRC showed significant variation over the motion cycle when corrected by 3D CTAC images. 4D CTAC- and CINE CTAC-corrected PET images reduced these motion artifacts. The amount of artifact reduction is greater when the target is surrounded by lower density material and when motion was based on sin4(x). 4D CTAC reduced artifacts more than CINE CTAC for most scenarios. For a target surrounded by water equivalent material, there was no advantage to 4D CTAC over CINE CTAC when using the sin(x) motion pattern. Attenuation correction using both 4D CTAC or CINE CTAC can reduce motion artifacts in regions that include a tissue interface such as the lung/diaphragm border. 4D CTAC is more effective than CINE CTAC at reducing artifacts in some, but not all, scenarios.


Subject(s)
Four-Dimensional Computed Tomography/methods , Lung/diagnostic imaging , Algorithms , Artifacts , Diaphragm/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Lung Neoplasms/diagnostic imaging , Motion , Positron-Emission Tomography/methods , Reproducibility of Results
16.
Med Phys ; 38(6): 2937-47, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21815367

ABSTRACT

PURPOSE: To investigate the feasibility of using three-dimensional surface imaging cameras as an external surrogate of tumor motion through a temporal synchronization with kV imaging. METHODS: To obtain an "x-ray on" signal from the on-board kV fluoroscopy system (XVI, Elekta), a hardware controller (Gate Controller) was interfaced between the kV fluoroscopy and Gate CT (VisionRT Ltd., London) computers. First, phantom experiments were performed using a programmable respiratory motion platform (sinusoidal motion, period = 3-5 s). The platform included a chest-wall component (A-P amplitude = 1 cm) tracked with the surface camera, while tumorlike objects translated in the superior-inferior direction were tracked using kV fluoroscopy (300 frames, frequency 5.5 fps). Accuracy of tracking the chest-wall platform was assessed, and the latency of the system was characterized by performing linear regression between the peak times obtained from Gate CT and fluoroscopy. Increasing the complexity of experiments, tumor displacement curves from three patients were simulated using synchronous tumor-abdomen data (RTRT). Our approach was further validated by imaging four free-breathing lung cancer patients with simultaneous Gate CT and kV fluoroscopy for approximately 55 s. Consideration was also given to varied sizes and locations of the tracked region of interest on the patient surface. RESULTS: For simple sinusoidal curves, measured amplitude (peak-to-peak) was 1.005 +/- 0.003 cm, 1.013 +/- 0.003 cm, and 1.003 +/- 0.005 cm for periods of 5, 4, and 3.3 s, respectively, demonstrating an excellent agreement with the actual chest platform amplitude of 1.0 cm. Period measurements were within 0.2% of actual using the surface cameras and within 0.9% of actual value using fluoroscopy. For the sinusoidal motion, the system latency was 0.64 +/- 0.02 s. This was further validated for the simulated tumor motion from three patients (latency = 0.65 +/- 0.03 s). Five of the nine patient fractions studied showed the associations between the abdomen and tumor were equivalent or better (Pearson r = 0.93-0.98) than those observed between the diaphragm and tumor (Pearson r = 0.89-0.95). A repeat analysis of five different tracked surfaces on the same patient further demonstrated strong agreement with the diaphragm and tumor, although no improvement in association strength was observed with increased size of region of interest. CONCLUSIONS: The feasibility of using surface imaging cameras to track the patient's abdomen as an external surrogate, while using kV imaging to track internal anatomy in synchrony, has been demonstrated. With further validation through additional patient studies to confirm these findings, gated radiation therapy treatments using surface imaging cameras as the external surrogate can be facilitated.


Subject(s)
Fluoroscopy/instrumentation , Feasibility Studies , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/physiopathology , Molecular Imaging , Movement , Phantoms, Imaging , Surface Properties
17.
Med Phys ; 37(11): 5850-7, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21158297

ABSTRACT

PURPOSE: To compare the effect of respiration-induced motion on delivered dose (the interplay effect) for different treatment techniques under realistic clinical conditions. METHODS: A flexible resin tumor model was created using rapid prototyping techniques based on a computed tomography (CT) image of an actual tumor. Twenty micro-MOSFETs were inserted into the tumor model and the tumor model was inserted into an anthropomorphic breathing phantom. Phantom motion was programed using the motion trajectory of an actual patient. A four-dimensional CT image was obtained and several treatment plans were created using different treatment techniques and planning systems: Conformal (Eclipse), step-and-shoot intensity-modulated radiation therapy (IMRT) (Pinnacle), step-and-shoot IMRT (XiO), dynamic IMRT (Eclipse), complex dynamic IMRT (Eclipse), hybrid IMRT [60% conformal, 40% dynamic IMRT (Eclipse)], volume-modulated are therapy (VMAT) [single-arc (Eclipse)], VMAT [double-arc (Eclipse)], and complex VMAT (Eclipse). The complex plans were created by artificially pushing the optimizer to give complex multileaf collimator sequences. Each IMRT field was irradiated five times and each VMAT field was irradiated ten times, with each irradiation starting at a random point in the respiratory cycle. The effect of fractionation was calculated by randomly summing the measured doses. The maximum deviation for each measurement point per fraction and the probability that 95% of the model tumor had dose deviations less than 2% and 5% were calculated as a function of the number of fractions. Tumor control probabilities for each treatment plan were calculated and compared. RESULTS: After five fractions, measured dose deviations were less than 2% for more than 95% of measurement points within the tumor model for all plans, except the complex dynamic IMRT, step-and-shoot IMRT (XiO), complex VMAT, and single-arc VMAT plans. Reducing the dose rate of the complex IMRT plans from 600 to 200 MU/min reduced the dose deviations to less than 2%. Dose deviations were less than 5% after five fractions for all plans, except the complex single-arc VMAT plan. CONCLUSIONS: Rapid prototyping techniques can be used to create realistic tumor models. For most treatment techniques, the dose deviations averaged out after several fractions. Treatments with unusually complicated multileaf collimator sequences had larger dose deviations. For IMRT treatments, dose deviations can be reduced by reducing the dose rate. For VMAT treatments, using two arcs instead of one is effective for reducing dose deviations.


Subject(s)
Lung/diagnostic imaging , Medical Errors/prevention & control , Radiotherapy/methods , Algorithms , Dose Fractionation, Radiation , Humans , Imaging, Three-Dimensional , Lung/pathology , Models, Statistical , Motion , Phantoms, Imaging , Radiotherapy, Intensity-Modulated/methods , Reproducibility of Results , Respiration , Time Factors , Tomography, X-Ray Computed/methods
18.
Med Phys ; 37(1): 4-11, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20175460

ABSTRACT

PURPOSE: We have investigated the dosimetric errors caused by the interplay between the motions of the LINAC and the tumor during the delivery of a volume modulated arc therapy treatment. This includes the development of an IMRT QA technique, applied here to evaluate RapidArc plans of varying complexity. METHODS: An IMRT QA technique was developed, which involves taking a movie of the delivered dose (0.2 s frames) using a 2D ion chamber array. Each frame of the movie is then moved according to a respiratory trace and the cumulative dose calculated. The advantage of this approach is that the impact of turning the beam on at different points in the respiratory trace, and of different types of motion, can be evaluated using data from a single irradiation. We evaluated this technique by comparing with the results when we actually moved the phantom during irradiation. RapidArc plans were created to treat a 62 cc spherical tumor in a lung phantom (16 plans) and a 454 cc irregular tumor in an actual patient (five plans). The complexity of each field was controlled by adjusting the MU (312-966 MU). Each plan was delivered to a phantom, and a movie of the delivered dose taken using a 2D ion chamber array. Patient motion was modeled by shifting each dose frame according to a respiratory trace, starting the motion at different phases. The expected dose distribution was calculated by blurring the static dose distribution with the target motion. The dose error due to the interplay effect was then calculated by comparing the delivered dose with the expected dose distribution. Peak-to-peak motion of 0.5, 1.0, and 2.0 cm in the craniocaudal and right-left directions, with target periods of 3 and 5 s, were evaluated for each plan (252 different target motion/plan combinations). RESULTS: The daily dose error due to the interplay effect was less than 10% for 98.4% of all pixels in the target for all plans investigated. The percentage of pixels for which the daily dose error could be larger than 5% increased with increasing plan complexity (field MU), but was less than 15% for all plans if the motion was 1 cm or less. For 2 cm motion, the dose error could be larger than 5% for 40% of pixels, but was less than 5% for more than 80% of pixels for MU < 550, and was less than 10% for 99% of all pixels. The interplay effect was smaller for 3 s periods than for 5 s periods. CONCLUSIONS: The interplay between the motions of the LINAC and the target can result in an error in the delivered dose. This effect increases with plan complexity, and with target magnitude and period. It may average out after many fractions.


Subject(s)
Lung Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Software , Humans , Motion , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity , Software Validation
19.
J Appl Clin Med Phys ; 12(1): 3276, 2010 Sep 20.
Article in English | MEDLINE | ID: mdl-21330973

ABSTRACT

The purpose was to evaluate the effect of dose rate on discrepancies between expected and delivered dose caused by the interplay effect. Fifteen separate dynamic IMRT plans and five hybrid IMRT plans were created for five patients (three IMRT plans and one hybrid IMRT plan per patient). The impact of motion on the delivered dose was evaluated experimentally for each treatment field for different dose rates (200 and 400 MU/min), and for a range of target amplitudes and periods. The maximum dose discrepancy for dynamic IMRT fields was 18.5% and 10.3% for dose rates of 400 and 200 MU/min, respectively. The maximum dose discrepancy was larger than this for hybrid plans, but the results were similar when weighted by the contribution of the IMRT fields. The percentage of fields for which 98% of the target never experienced a 5% or 10% dose discrepancy increased when the dose rate was reduced from 400 MU/min to 200 MU/min. For amplitudes up to 2 cm, reducing the dose rate to 200 MU/min is effective in keeping daily dose discrepancies for each field within 10%.


Subject(s)
Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Humans , Motion , Organs at Risk/radiation effects , Radiation Dosage , Radiotherapy Dosage , Time Factors
20.
Med Phys ; 36(10): 4536-46, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19928085

ABSTRACT

In previous studies, an electronic portal imaging device (EPID) in cine mode was used for validating respiratory gating and stereotactic body radiation therapy (SBRT) by tracking implanted fiducials. The manual marker tracking methods that were used were time and labor intensive, limiting the utility of the validation. The authors have developed an automatic algorithm to quickly and accurately extract the markers in EPID images and reconstruct their 3D positions. Studies have been performed with gold fiducials placed in solid water and dynamic thorax phantoms. In addition, the authors have examined the cases of five patients being treated under an SBRT protocol for hepatic metastases. For each case, a sequence of images was created by collecting the exit radiation using the EPID. The markers were detected and recognized using an image processing algorithm based on the Laplacian of Gaussian function. To reduce false marker detection, a marker registration technique was applied using image intensity as well as the geometric spatial transformations between the reference marker positions produced from the projection of 3D CT images and the estimated marker positions. An average marker position in 3D was reconstructed by backprojecting, towards the source, the position of each marker on the 2D image plane. From the static phantom study, spatial accuracies of <1 mm were achieved in both 2D and 3D marker locations. From the dynamic phantom study, using only the Laplacian of the Gaussian algorithm, the marker detection success rate was 88.8%. However, adding a marker registration technique which utilizes prior CT information, the detection success rate was increased to 100%. From the SBRT patient study, intrafractional tumor motion (3.1-11.3 mm) in the SI direction was measured using the 2D images. The interfractional patient setup errors (0.1-12.7 mm) in the SI, AP, and LR directions were obtained from the average marker locations reconstructed in 3D and compared to the reference planning CT image. The authors have developed an automatic algorithm to extract marker locations from MV images and have evaluated its performance. The measured intrafractional tumor motion and the interfractional daily patient setup error can be used for off-line retrospective verification of SBRT.


Subject(s)
Imaging, Three-Dimensional/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Radiometry/methods , Radiosurgery/methods , Radiotherapy, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , X-Ray Intensifying Screens , Algorithms , Artificial Intelligence , Humans , Pattern Recognition, Automated/methods , Radiographic Image Enhancement/methods , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...