Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(29): 34895-34908, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37439783

ABSTRACT

Polymer-derived processing of ceramics (PDC) is an efficient technique to prepare porous nanocomposites with precise control over their phase composition and in relation to the Si-based ceramic matrix containing free carbon. The microstructure of these nanocomposites can be fine-tuned at the molecular scale for obtaining necessary properties by tailoring the chemical configuration of the preceramic polymer. In the present work, vanadium-based nanocomposites were synthesized as oxygen reduction reaction (ORR) catalysts with the objective of elucidating the effect of microstructure changes on catalytic efficiency. For this purpose, a single-source precursor (SSP) was synthesized by crosslinking phenyl- and hydrido-substituted polysiloxane and vanadium acetylacetonate followed by pyrolysis at 1100 °C. The resulting solid was composed of sparsely distributed nanodomains of vanadium carbide (VC) crystals precipitated within an amorphous silicon oxycarbide (-Si-O-C-) matrix. High-temperature treatment of the pyrolyzed samples beyond 1300 °C induced the crystallization of ß-SiC as well as VC. Furthermore, Raman spectroscopy confirmed the segregation of sp2-hybridized, turbostratic free carbon. The samples exposed to 1300 °C revealed a specific surface area of 239 m2/g. The electrocatalytic activity of the sample heat-treated at 1300 °C showed the best performance with respect to the ORR performance with onset potential (Eo) and half-wave potential (E1/2) values of 0.81 and 0.72 V, respectively. In addition, improved kinetics with a Tafel slope of 57 mV/dec and enhanced current density in the diffusion-controlled region (Id) of 3.7 mA/cm2 were observed for this sample. The increase in Eo was attributed to the optimal interfacial characteristics between the VC and SiOC matrix with better embedment of VC with free carbon through V-C bonds. The higher E1/2 and faster kinetics are because of the higher electronic conductivity caused by the free carbon effectively connecting metallic VC crystallites. Besides, the higher specific surface area of this sample enhanced Id.

2.
Molecules ; 25(24)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327541

ABSTRACT

The present work elaborates on the correlation between the amount and ordering of the free carbon phase in silicon oxycarbides and their charge carrier transport behavior. Thus, silicon oxycarbides possessing free carbon contents from 0 to ca. 58 vol.% (SiOC/C) were synthesized and exposed to temperatures from 1100 to 1800 °C. The prepared samples were extensively analyzed concerning the thermal evolution of the sp2 carbon phase by means of Raman spectroscopy. Additionally, electrical conductivity and Hall measurements were performed and correlated with the structural information obtained from the Raman spectroscopic investigation. It is shown that the percolation threshold in SiOC/C samples depends on the temperature of their thermal treatment, varying from ca. 20 vol.% in the samples prepared at 1100 °C to ca. 6 vol.% for the samples annealed at 1600 °C. Moreover, three different conduction regimes are identified in SiOC/C, depending on its sp2 carbon content: (i) at low carbon contents (i.e., <1 vol.%), the silicon oxycarbide glassy matrix dominates the charge carrier transport, which exhibits an activation energy of ca. 1 eV and occurs within localized states, presumably dangling bonds; (ii) near the percolation threshold, tunneling or hopping of charge carriers between spatially separated sp2 carbon precipitates appear to be responsible for the electrical conductivity; (iii) whereas above the percolation threshold, the charge carrier transport is only weakly activated (Ea = 0.03 eV) and is realized through the (continuous) carbon phase. Hall measurements on SiOC/C samples above the percolation threshold indicate p-type carriers mainly contributing to conduction. Their density is shown to vary with the sp2 carbon content in the range from 1014 to 1019 cm-3; whereas their mobility (ca. 3 cm2/V) seems to not depend on the sp2 carbon content.


Subject(s)
Carbon/chemistry , Ceramics/chemistry , Semiconductors , Silicon Compounds/chemistry , Electric Conductivity , Electronics/methods , Hot Temperature , Humans , Materials Testing , Oxidation-Reduction
3.
Materials (Basel) ; 13(22)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202741

ABSTRACT

There is an increasing clinical need to develop novel biomaterials that combine regenerative and biocidal properties. In this work, we present the preparation of silver/silica-based glassy bioactive (ABG) compositions via a facile, fast (20 h), and low temperature (80 °C) approach and their characterization. The fabrication process included the synthesis of the bioactive glass (BG) particles followed by the surface modification of the bioactive glass with silver nanoparticles. The microstructural features of ABG samples before and after exposure to simulated body fluid (SBF), as well as their ion release behavior during SBF test were evaluated using infrared spectrometry (FTIR), ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), electron microscopies (TEM and SEM) and optical emission spectroscopy (OES). The antibacterial properties of the experimental compositions were tested against Escherichia coli (E. coli). The results indicated that the prepared ABG materials possess antibacterial activity against E. coli, which is directly correlated with the glass surface modification.

4.
Membranes (Basel) ; 10(10)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992911

ABSTRACT

Solar hydrogen production via the photoelectrochemical water-splitting reaction is attractive as one of the environmental-friendly approaches for producing H2. Since the reaction simultaneously generates H2 and O2, this method requires immediate H2 recovery from the syngas including O2 under high-humidity conditions around 50 °C. In this study, a supported mesoporous γ-Al2O3 membrane was modified with allyl-hydrido-polycarbosilane as a preceramic polymer and subsequently heat-treated in Ar to deliver a ternary SiCH organic-inorganic hybrid/γ-Al2O3 composite membrane. Relations between the polymer/hybrid conversion temperature, hydrophobicity, and H2 affinity of the polymer-derived SiCH hybrids were studied to functionalize the composite membranes as H2-selective under saturated water vapor partial pressure at 50 °C. As a result, the composite membranes synthesized at temperatures as low as 300-500 °C showed a H2 permeance of 1.0-4.3 × 10-7 mol m-2 s-1 Pa-1 with a H2/N2 selectivity of 6.0-11.3 under a mixed H2-N2 (2:1) feed gas flow. Further modification by the 120 °C-melt impregnation of low molecular weight polycarbosilane successfully improved the H2-permselectivity of the 500 °C-synthesized composite membrane by maintaining the H2 permeance combined with improved H2/N2 selectivity as 3.5 × 10-7 mol m-2 s-1 Pa-1 with 36. These results revealed a great potential of the polymer-derived SiCH hybrids as novel hydrophobic membranes for purification of solar hydrogen.

5.
Chemistry ; 26(10): 2187-2194, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31671223

ABSTRACT

We report the first oxynitride of tin, Sn2 N2 O (SNO), exhibiting a Rh2 S3 -type crystal structure with space group Pbcn. All Sn atoms are in six-fold coordination, in contrast to Si in silicon oxynitride (Si2 N2 O) and Ge in the isostructural germanium oxynitride (Ge2 N2 O), which appear in four-fold coordination. SNO was synthesized at 20 GPa and 1200-1500 °C in a large volume press. The recovered samples were characterized by synchrotron powder X-ray diffraction and single-crystal electron diffraction in the TEM using the automated diffraction tomography (ADT) technique. The isothermal bulk modulus was determined as Bo =193(5) GPa by using in-situ synchrotron X-ray diffraction in a diamond anvil cell. The structure model is supported by DFT calculations. The enthalpy of formation, the bulk modulus, and the band structure have been calculated.

6.
Materials (Basel) ; 12(23)2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31766736

ABSTRACT

In the present work, Ca-containing silicon oxycarbides (SiCaOC) with varying Ca content have been synthesized via sol-gel processing and thermal treatment in inert gas atmosphere (pyrolysis). It has been shown that the as-prepared SiCaOC materials with low Ca loadings (Ca/Si molar ratios = 0.05 or 0.12) were X-ray amorphous; their glassy network contains Q3 sites, indicating the presence of Ca2+ at non-bridging-oxygen sites. SiCaOC with high Ca content (i.e., Ca/Si molar ratio = 0.50) exhibits the presence of crystalline calcium silicate (mainly pseudowollastonite). Furthermore, it has been shown that the incorporation of Ca into the SiOC glassy network has a significant effect on its porosity and specific surface area. Thus, the as-prepared Ca-free SiOC material is shown to be non-porous and having a specific surface area (SSA) of 22.5 m2/g; whereas SiCaOC with Ca/Si molar ratio of 0.05 exhibits mesoporosity and a SSA value of 123.4 m2/g. The further increase of Ca content leads to a decrease of the SSA and the generation of macroporosity in SiCaOC; thus, SiCaOC with Ca/Si molar ratio of 0.12 is macroporous and exhibits a SSA value of 39.5 m2/g. Bioactivity assessment in simulated body fluid (SBF) confirms the hydroxyapatite formation on all SiCaOC samples after seven days soaking, unlike the relatively inert ternary silicon oxycarbide reference. In particular, SiCaOC with a Ca/Si molar ratio of 0.05 shows an increased apatite forming ability compared to that of SiCaOC with Ca/Si molar ratio of 0.12; this difference is considered to be a direct consequence of the significantly higher SSA of the sample with the Ca/Si ratio of 0.05. The present work indicates two effects of Ca incorporation into the silicon oxycarbide glassy network on its bioactivity: Firstly, Ca2+ is shown to contribute to the slight depolymerization of the network, which clearly triggers the hydroxyapatite formation (compare the bioactive behavior of SiOC to that of SiCaOC with Ca/Si molar ratio 0.12 upon SBF exposure); secondly, the Ca2+ incorporation seems to strongly affect the porosity and SSA in the prepared SiCaOC materials. There is an optimum of Ca loading into the silicon oxycarbide glassy network (at a Ca/Si molar ration of 0.05), which provides mesoporosity and reaches maximum SSA, both highly beneficial for the bioactive behavior of the materials. An increase of the Ca loading leads, in addition to the crystallization of calcium silicates, to a coarsening of the pores (i.e., macroporosity) and a significant decrease of the SSA, both negatively affecting the bioactivity.

7.
Molecules ; 24(19)2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31575046

ABSTRACT

The preparation of ordered macroporous SiCN ceramics has attracted significant interest and is an attractive area for various applications, e.g., in the fields of catalysis, gas adsorption, or membranes. Non-oxidic ceramics, such as SiCN, own a great stability based on the covalent bonds between the containing elements, which leads to interesting properties concerning resistance and stability at high temperature. Their peculiar properties have become more and more important for a manifold of applications, like catalysis or separation processes, at high temperatures. Within this work, a feasible approach for the preparation of ordered porous materials by taking advantage of polymer-derived ceramics is presented. To gain access to free-standing films consisting of porous ceramic materials, the combination of monodisperse organic polymer-based colloids with diameters of 130 nm and 180 nm featuring a processable preceramic polymer is essential. For this purpose, the tailored design of hybrid organic/inorganic particles featuring anchoring sites for a preceramic polymer in the soft shell material is developed. Moreover, polymer-based core particles are used as sacrificial template for the generation of pores, while the preceramic shell polymer can be converted to the ceramic matrix after thermal treatment. Two different routes for the polymer particles, which can be obtained by emulsion polymerization, are followed for covalently linking the preceramic polysilazane Durazane1800 (Merck, Germany): (i) Free radical polymerization and (ii) atom transfer radical polymerization (ATRP) conditions. These hybrid hard core/soft shell particles can be processed via the so-called melt-shear organization for the one-step preparation of free-standing particle films. A major advantage of this technique is the absence of any solvent or dispersion medium, enabling the core particles to merge into ordered particle stacks based on the soft preceramic shell. Subsequent ceramization of the colloidal crystal films leads to core particle degradation and transformation into porous ceramics with ceramic yields of 18-54%.


Subject(s)
Ceramics/chemistry , Polymers/chemistry , Hydrodynamics , Polymerization , Porosity , Thermogravimetry
8.
Dalton Trans ; 48(29): 11018-11033, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31232398

ABSTRACT

The present study introduces a facile single-source precursor preparative access to bamboo-like multiwalled carbon nanotubes (MWCNTs) highly dispersed within a mesoporous silica-rich matrix. The metal-free single-source precursor was synthesized via a one-pot sol-gel process using tetramethyl orthosilicate (TMOS) and 4,4'-dihydroxybiphenyl (DHBP) and converted subsequently via pyrolysis under an argon atmosphere into MWCNT/silica nanocomposites. The in situ segregation of the highly defective bamboo-like MWCNTs was carefully investigated and has been shown to occur within the mesopores of the silica-rich matrix at relatively low temperatures and without the use of a metal catalyst. The experimental results have been supported by extensive computational simulations, which correlate the molecular architecture of the single-source precursor with the structural features of the carbon phase segregating from the silica matrix. Furthermore, the role of hydrogen in the stability of the prepared nanocomposites as well as in the high-temperature evolution and morphology of the segregated MWCNTs has been discussed based on vibrational spectroscopy, calorimetric studies and empirical potential calculations. The results obtained within the present study may allow for designing highly-defined nanocarbon-containing composites with tailored structural features and property profiles.

9.
ACS Biomater Sci Eng ; 5(10): 5337-5347, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-33464075

ABSTRACT

The bioactivity of Ca and/or B modified silicon oxycarbides has been assessed in vitro upon immersion in SBF (simulated body fluid). In the context of the present work, bioactivity refers to the likeliness of hydroxyapatite crystallization (biomineralization) on the surface of a material when in contact with physiological fluids. The incorporation of Ca and B into the silicon oxycarbide glass network is found to increase its bioactivity, which seems to scale with the content of Ca; thus, SiOC glass with a relatively large Ca/Si molar ratio (i.e., 0.12) is shown to exhibit bioactive characteristics similar to those of the benchmark silicate bioactive glass of 45S5 composition. The release kinetics of the SiOC glasses modified with Ca and/or B during the SBF test was studied by inductively coupled plasma-optical emission spectroscopy. It has been observed that the Si release kinetics can be correlated with the Ca content in the SiOC glasses: SiOC based glasses modified with Ca exhibited low Si release activation energies (i.e., 0.07 eV), being comparable to that of 45S5 bioactive glass (i.e., 0.04 eV); whereas silicon oxycarbides without Ca modification showed higher activation energies for Si release (i.e., 0.27 eV).

10.
Materials (Basel) ; 11(2)2018 Feb 10.
Article in English | MEDLINE | ID: mdl-29439441

ABSTRACT

In the present study, the effect of the chemical and phase composition on the thermal properties of silicon oxide carbides (SiOC) has been investigated. Dense monolithic SiOC materials with various carbon contents were prepared and characterized with respect to their thermal expansion, as well as thermal conductivity. SiOC glass has been shown to exhibit low thermal expansion (e.g., ca. 3.2 × 10-6 K-1 for a SiOC sample free of segregated carbon) and thermal conductivity (ca. 1.5 W/(m∙K)). Furthermore, it has been observed that the phase separation, which typically occurs in SiOC exposed to temperatures beyond 1000-1200 °C, leads to a decrease of the thermal expansion (i.e., to 1.83 × 10-6 K-1 for the sample above); whereas the thermal conductivity increases upon phase separation (i.e., to ca. 1.7 W/(m∙K) for the sample mentioned above). Upon adjusting the amount of segregated carbon content in SiOC, its thermal expansion can be tuned; thus, SiOC glass ceramics with carbon contents larger than 10-15 vol % exhibit similar coefficients of thermal expansion to that of the SiOC glass. Increasing the carbon and SiC content in the studied SiOC glass ceramics leads to an increase in their thermal conductivity: SiOC with relatively large carbon and silicon carbides (SiC) volume fractions (i.e., 12-15 and 20-30 vol %, respectively) were shown to possess thermal conductivities in the range from 1.8 to 2.7 W/(m∙K).

11.
Materials (Basel) ; 11(1)2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29315211

ABSTRACT

The microstructure of segregated carbon in silicon oxycarbide (SiOC), hot-pressed at T = 1600 °C and p = 50 MPa, has been investigated by VIS Raman spectroscopy (λ = 514 nm) within the temperature range 25-1000 °C in air. The occurrence of the G, D' and D bands at 1590, 1620 and 1350 cm-1, together with a lateral crystal size La < 10 nm and an average distance between lattice defects LD ≈ 8 nm, provides evidence that carbon exists as nano-crystalline phase in SiOC containing 11 and 17 vol % carbon. Both samples show a linear red shift of the G band up to the highest temperature applied, which is in agreement with the description of the anharmonic contribution to the lattice potential by the modified Tersoff potential. The temperature coefficient χG = -0.024 ± 0.001 cm-1/°C is close to that of disordered carbon, e.g., carbon nanowalls or commercial activated graphite. The line width of the G band is independent of temperature with FWHM-values of 35 cm-1 (C-11) and 45 cm-1 (C-17), suggesting that scattering with defects and impurities outweighs the phonon-phonon and phonon-electron interactions. Analysis of the Raman line intensities indicates vacancies as dominating defects.

12.
Materials (Basel) ; 10(11)2017 Nov 18.
Article in English | MEDLINE | ID: mdl-29156541

ABSTRACT

This study investigates the dissolution behavior as well as the surface biomineralization in simulated body fluid (SBF) of a paste composed of glycerol (gly) and a bioactive glass in the system CaO-MgO-SiO2-Na2O-P2O5-CaF2 (BG). The synthesis of the bioactive glass in an alumina crucible has been shown to significantly affect its bioactivity due to the incorporation of aluminum (ca. 1.3-1.4 wt %) into the glass network. Thus, the kinetics of the hydroxyapatite (HA) mineralization on the glass prepared in the alumina crucible was found to be slower than that reported for the same glass composition prepared in a Pt crucible. It is considered that the synthesis conditions lead to the incorporation of small amount of aluminum into the BG network and thus delay the HA mineralization. Interestingly, the BG-gly paste was shown to have significantly higher bioactivity than that of the as-prepared BG. Structural analysis of the paste indicate that glycerol chemically interacts with the glass surface and strongly alter the glass network architecture, thus generating a more depolymerized network, as well as an increased amount of silanol groups at the surface of the glass. In particular, BG-gly paste features early intermediate calcite precipitation during immersion in SBF, followed by hydroxyapatite formation after ca. seven days of SBF exposure; whereas the HA mineralization seems to be suppressed in BG, probably a consequence of the incorporation of aluminum into the glass network. The results obtained within the present study reveal the positive effect of using pastes based on bioactive glasses and organic carriers (here alcohols) which may be of interest not only due to their advantageous visco-elastic properties, but also due to the possibility of enhancing the glass bioactivity upon surface interactions with the organic carrier.

13.
Materials (Basel) ; 9(12)2016 Nov 24.
Article in English | MEDLINE | ID: mdl-28774079

ABSTRACT

Novel bioactive glasses based on a Ca- and Mg-modified silicon oxycarbide (SiCaMgOC) were prepared from a polymeric single-source precursor, and their in vitro activity towards hydroxyapatite mineralization was investigated upon incubating the samples in simulated body fluid (SBF) at 37 °C. The as-prepared materials exhibit an outstanding resistance against devitrification processes and maintain their amorphous nature even after exposure to 1300 °C. The X-ray diffraction (XRD) analysis of the SiCaMgOC samples after the SBF test showed characteristic reflections of apatite after only three days, indicating a promising bioactivity. The release kinetics of the Ca2+ and Mg2+ and the adsorption of H⁺ after immersion of SiCaMgOC in simulated body fluid for different soaking times were analyzed via optical emission spectroscopy. The results show that the mechanism of formation of apatite on the surface of the SiCaMgOC powders is similar to that observed for standard (silicate) bioactive glasses. A preliminary cytotoxicity investigation of the SiOC-based bioactive glasses was performed in the presence of mouse embryonic fibroblasts (MEF) as well as human embryonic kidney cells (HEK-293). Due to their excellent high-temperature crystallization resistance in addition to bioactivity, the Ca- and Mg-modified SiOC glasses presented here might have high potential in applications related to bone repair and regeneration.

14.
Dalton Trans ; 44(17): 8238-46, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25847542

ABSTRACT

Phase-pure scheelite AMoO4 and AWO4 (A = Ba, Sr, Ca) were thermally treated under an ammonia atmosphere at 400 to 900 °C. SrMoO4 and SrWO4 were shown to convert into cubic perovskite SrMoO2N and SrWO1.5N1.5, at 700 °C and 900 °C respectively, and to form metastable intermediate phases (scheelite SrMoO4-xNx and SrWO4-xNx), as revealed by X-ray diffraction (XRD), elemental analysis and FTIR spectroscopy. High-temperature oxide melt solution calorimetry reveals that the enthalpy of formation for SrM(O,N)3 (M = Mo, W) perovskites is less negative than that of the corresponding scheelite oxides, though the conversion of the scheelite oxides into perovskite oxynitrides is thermodynamically favorable at moderate temperatures. The reaction of BaMO4 with ammonia leads to the formation of rhombohedral Ba3M2(O,N)8 and the corresponding binary metal nitrides Mo3N2 and W4.6N4; similar behavior was observed for CaMO4, which converted upon ammonolysis into individual oxides and nitrides. Thus, BaMO4 and CaMO4 were shown to not provide access to perovskite oxynitrides. The influence of the starting scheelite oxide precursor, the structure distortion and the degree of covalency of the B-site-N bond are discussed within the context of the formability of perovskite oxynitrides.

15.
Nanomaterials (Basel) ; 5(2): 468-540, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-28347023

ABSTRACT

The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

16.
Macromol Rapid Commun ; 36(7): 597-603, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25504616

ABSTRACT

A novel strategy for the preparation of poly(ferrocenylsilane) (PFS) immobilized on the surface of cross-linked polystyrene (PS) nanoparticles is reported. The ferrocene-containing core/shell architectures are shown to be excellent candidates as preceramic polymers yielding spherical ceramic materials consisting of iron silicide (Fe3 Si) and metallic iron after thermal treatment. For this purpose, dimethyl- and hydromethyl[1]silaferrocenophane monomers are polymerized by surface-initiated ring-opening polymerization upon taking advantage of residual vinylic moieties at the PS particle surface. A strategy for selective chain growth from the particle surface is developed without the formation of free PFS homopolymer in solution. The grafted particles are characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). These particles are excellent precursors for ceramics as studied by thermogravimetric analysis (TGA). The composition of the ceramics is studied using X-ray diffraction (XRD) measurements, while the morphology is probed by scanning electron microscopy (SEM) revealing the original spherical shape of the precursor particles. Obtained ceramic materials- predominantly based on iron silicides-show ferromagnetic behavior as investigated by superconducting quantum interference device (SQUID) magnetization measurements at different temperatures.


Subject(s)
Ceramics/chemical synthesis , Organometallic Compounds/chemical synthesis , Polymers/chemical synthesis , Anions/chemistry , Ceramics/chemistry , Colloids/chemical synthesis , Colloids/chemistry , Organometallic Compounds/chemistry , Polymerization , Polymers/chemistry
17.
Nanoscale ; 6(22): 13678-89, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25278173

ABSTRACT

A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfC(x)N(1-x)-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfC(x)N(1-x)-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfC(x)N(1-x)-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a ß-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm(-1), the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm(-1).

18.
Inorg Chem ; 53(19): 10443-55, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25231931

ABSTRACT

Amorphous SiHfBCN ceramics were prepared from a commercial polysilazane (HTT 1800, AZ-EM), which was modified upon reactions with Hf(NEt2)4 and BH3·SMe2, and subsequently cross-linked and pyrolyzed. The prepared materials were investigated with respect to their chemical and phase composition, by means of spectroscopy techniques (Fourier transform infrared (FTIR), Raman, magic-angle spinning nuclear magnetic resonance (MAS NMR)), as well as X-ray diffraction (XRD) and transmission electron microscopy (TEM). Annealing experiments of the SiHfBCN samples in an inert gas atmosphere (Ar, N2) at temperatures in the range of 1300-1700 °C showed the conversion of the amorphous materials into nanostructured UHTC-NCs. Depending on the annealing atmosphere, HfC/HfB2/SiC (annealing in argon) and HfN/Si3N4/SiBCN (annealing in nitrogen) nanocomposites were obtained. The results emphasize that the conversion of the single-phase SiHfBCN into UHTC-NCs is thermodynamically controlled, thus allowing for a knowledge-based preparative path toward nanostructured ultrahigh-temperature stable materials with adjusted compositions.

19.
Langmuir ; 30(5): 1204-9, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24456557

ABSTRACT

A novel strategy to achieve easily scalable magneto-responsive nanoceramics with core/shell and nanorattle-type or yolk/shell architectures based on a ferrocene-containing polymer precursor is described. Monodisperse nanorattle-type magnetic particles are obtained by using convenient semicontinuous emulsion polymerization and Stöber process protocols followed by thermal treatment. The particles are characterized by TGA, TEM, WAXS, DLS, XPS, and Raman spectroscopy. Herein, established synthetic protocols widen opportunities for the convenient bottom-up strategies of various ferrocene-precursor-based spherical architectures for advanced ceramics with potential applications within fields of sensing and stimuli-responsive nanophotonics.


Subject(s)
Emulsions/chemistry , Magnetic Phenomena , Nanoparticles/chemistry , Ferrous Compounds/chemistry , Metallocenes , Microscopy, Electron, Transmission , Polymerization , Temperature
20.
Proc Natl Acad Sci U S A ; 110(40): 15904-7, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24043830

ABSTRACT

Amorphous silicon oxycarbide polymer-derived ceramics (PDCs), synthesized from organometallic precursors, contain carbon- and silica-rich nanodomains, the latter with extensive substitution of carbon for oxygen, linking Si-centered SiO(x)C(4-x) tetrahedra. Calorimetric studies demonstrated these PDCs to be thermodynamically more stable than a mixture of SiO2, C, and silicon carbide. Here, we show by multinuclear NMR spectroscopy that substitution of C for O is also attained in PDCs with depolymerized silica-rich domains containing lithium, associated with SiO(x)C(4-x) tetrahedra with nonbridging oxygen. We suggest that significant (several percent) substitution of C for O could occur in more complex geological silicate melts/glasses in contact with graphite at moderate pressure and high temperature and may be thermodynamically far more accessible than C for Si substitution. Carbon incorporation will change the local structure and may affect physical properties, such as viscosity. Analogous carbon substitution at grain boundaries, at defect sites, or as equilibrium states in nominally acarbonaceous crystalline silicates, even if present at levels at 10-100 ppm, might form an extensive and hitherto hidden reservoir of carbon in the lower crust and mantle.


Subject(s)
Carbon/chemistry , Oxygen/chemistry , Planets , Silicates/analysis , Magnetic Resonance Spectroscopy , Models, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...