Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 119(10): 1964-72, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25686470

ABSTRACT

A theoretical approach to simulation of the transient spectra in molecular systems with ultrafast photoinduced nonradiative electronic transitions is developed. The evolution of the excited and ground state populations as well as the nonradiative transitions between them are calculated in the framework of the stochastic multichannel point-transition model involving the reorganization of the medium and the intramolecular high frequency vibrational modes. Simulations of transient spectra of donor-acceptor pairs excited in the charge-transfer band that are accompanied by ultrafast charge recombination into the ground state demonstrate a possibility of positive band appearance in the transient absorption spectrum caused by those systems in the ground state, which returned there from the excited state. The region of the parameters of the donor-acceptor systems where a positive ground state absorption signal can be observed is discussed. A qualitative comparison of the simulated transient spectra with the experimental data on betaine-30 is presented.

2.
J Phys Chem B ; 117(24): 7426-35, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23721362

ABSTRACT

The multichannel stochastic point transition model of photoinduced electron transfer from both a vibrationally unrelaxed and a relaxed states involving the vibrational relaxation in donor-acceptor pairs has been elaborated. The U-shaped temperature dependencies of the rate constants of the intramolecular photoinduced charge separation from both the vibrationally unrelaxed and the relaxed states observed in Zn-porphyrin-bridge-quinone compounds in 2-methyltetrahydrofuran solvent have been reproduced in the framework of the proposed model that accounts for the temperature dependencies of the charge separation free energy gap and the medium reorganization energy. This modeling has allowed uncovering the mechanism of such a variation of the rate constant with the temperature. In the high temperature region, 310-125 K, the charge separation proceeds in the solvent controlled regime and its rate constant decreases with decreasing the temperature mirroring the temperature dependence of the medium relaxation rate. Further lowering the temperature leads to a rise of the reaction free energy gap so that it becomes larger than the medium reorganization energy. In this region the dynamic solvent effect is strongly suppressed and the charge separation rate constant becomes independent from the solvent relaxation rate. Although the medium relaxation rate continues to decrease with decreasing the temperature, the charge separation rate constant starts to rise because the reaction proceeds in the barrierless region.


Subject(s)
Metalloporphyrins/chemistry , Organometallic Compounds/chemistry , Quinones/chemistry , Temperature , Zinc/chemistry , Kinetics , Molecular Structure , Photochemical Processes
3.
J Phys Chem A ; 117(22): 4564-73, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23679227

ABSTRACT

Intramolecular charge separation from the second singlet excited state of directly linked Zn-porphyrin-imide dyads and following charge recombination into the first singlet excited and the ground states has been investigated in the framework of a model incorporating four electronic states (the first and the second singlet excited, the charge separated, and the ground states) as well as their vibrational sublevels. Kinetics of the transitions between these states are described in terms of the stochastic point-transition approach involving reorganization of a number of high frequency vibrational modes. The influence of the model parameters (the number of high frequency vibrational modes, the magnitude of the reorganization energies of the medium and the high frequency intramolecular vibrations, the solvent polarity) on the kinetics of population of the second and first singlet excited states as well as the charge separated state has been investigated. Simulation of the kinetics of the charge separated state population allows quantitative reproducing of the distinctive features of the two-humped kinetic curve observed in the experiment.

4.
J Phys Chem A ; 116(4): 1159-67, 2012 Feb 02.
Article in English | MEDLINE | ID: mdl-22214323

ABSTRACT

Intramolecular charge separation from the second singlet excited state of directly linked Zn-porphyrin-imide dyads and following charge recombination into the first singlet excited state has been investigated in the framework of a model involving three electronic states (the first and the second singlet excited and charge separated states) as well as their vibrational sublevels. Kinetics of the transitions between these states are described in terms of the stochastic point-transition approach. The influence of the model parameters (free energy change of charge separation, magnitude of the reorganization energies of the medium and the high frequency intramolecular vibrations, the rate of relaxation of the medium and the intramolecular high frequency vibrational mode) on the kinetics of population of both the charge separated and the first singlet excited states has been explored. Simulations of the kinetics of the charge separated state population have allowed reproducing the distinctive features of the kinetics observed in the experiment [Wallin, S.; Monnereau, C.; Blart, E.; Gankou, J.-R.; Odobel, F.; Hammarström, L. J. Phys. Chem. A 2010, 114, 1709]: (i) two maxima on short time scale (hundreds of femtoseconds) and long time scale (tens of picoseconds), (ii) the magnitudes of both maxima, and (iii) the depth of the notch between the maxima.


Subject(s)
Metalloporphyrins/chemistry , Quantum Theory , Zinc/chemistry , Kinetics , Vibration
5.
J Phys Chem A ; 113(1): 103-7, 2009 Jan 08.
Article in English | MEDLINE | ID: mdl-19063611

ABSTRACT

A model of the intramolecular charge separation from the second singlet excited-state of directly linked Zn-porphyrin-imide dyads and following charge recombination into the first singlet excited-state has been constructed and investigated. The model incorporates three electronic states (the first and the second singlet excited and charge separated states) as well as their vibrational sublevels. Dynamics of the transitions between these states are described in the framework of the stochastic point-transition approach. The relaxation of the intramolecular high frequency vibrational mode is supposed to occur as a single-quantum transition between nearest states with a time constant depending on the number of the vibrational state. The medium relaxation is characterized by two timescales. A good fitting to experimentally observed population dynamics of both the first and the second singlet excited states has been obtained. The calculations show the charge recombination into the first excited-state to proceed in a hot stage in parallel with the relaxation of both the medium and the intramolecular high-frequency vibrational mode.

6.
J Phys Chem A ; 112(4): 594-601, 2008 Jan 31.
Article in English | MEDLINE | ID: mdl-18181591

ABSTRACT

The charge recombination dynamics of excited donor-acceptor complexes consisting of hexamethylbenzene (HMB), pentamethylbenzene (PMB), and isodurene (IDU) as electron donors and tetracyanoethylene (TCNE) as electron acceptor in various polar solvents has been investigated within the framework of the stochastic approach. The model accounts for the reorganization of intramolecular high-frequency vibrational modes as well as for the solvent reorganization. All electron-transfer energetic parameters have been determined from the resonance Raman data and from the analysis of the stationary charge transfer absorption band, while the electronic coupling has been obtained from the fit to the charge recombination dynamics in one solvent. It appears that nearly 100% of the initially excited donor-acceptor complexes recombine in a nonthermal (hot) stage when the nonequilibrium wave packet passes through a number of term crossings corresponding to transitions toward vibrational excited states of the electronic ground state. Once all parameters of the model have been obtained, the influence of the dynamic solvent properties (solvent effect) and of the carrier frequency of the excitation pulse (spectral effect) on the charge recombination dynamics have been explored. The main conclusions are (i) the model provides a globally satisfactory description for the IDU/TCNE complex although it noticeably overestimates the spectral effect, (ii) the solvent effect is quantitatively well described for the PMB/TCNE and HMB/TCNE complexes but the model fails to reproduce their spectral effects, and (iii) the positive spectral effect observed with the HMB/TCNE complex cannot be described within the framework of two-level models and the charge redistribution in the excited complexes should most probably be taken into account.

7.
J Phys Chem A ; 110(43): 11919-25, 2006 Nov 02.
Article in English | MEDLINE | ID: mdl-17064179

ABSTRACT

The charge recombination (CR) dynamics of geminate ion pairs formed by excitation of the ground-state donor-acceptor complexes in polar solvent have been investigated within the framework of stochastic approach. It is shown that for low exergonic reactions these dynamics critically depend on the reorganization energy of intramolecular high-frequency mode. Even moderate reorganization energies (0.1-0.2 eV) significantly accelerate the excited-state population decay making it nearly exponential. In the solvent-controlled regime, the majority of the excited donor-acceptor complexes recombine at nonthermal (hot) stage when the nonequilibrium initial wave packet passes through a number of term crossings corresponding to the transitions with creation of several vibrational quanta. Analysis of this mechanism allows to conclude (i) the CR in viscous solvents proceeds much faster than the diffusive relaxation of solvent, (ii) under certain conditions, the CR rate becomes practically independent of the diffusive component of solvent relaxation which is determined by solvent viscosity, (iii) in contrast to predictions of Marcus theory, the CR rate decreases monotonically with the rise of reaction exergonicity even at small free energy gaps, in accordance with experimental results. Two semiquantitative approaches providing rather simple analytical expressions for the hot charge recombination dynamics are suggested. These approximations give a good reproduction of the excited-state decay in the wide area of model parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...