Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 46(6): 1564-73, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20171304

ABSTRACT

The ability of bone to resist catastrophic failure is critically dependent upon the material properties of bone matrix, a composite of hydroxyapatite, collagen type I, and noncollagenous proteins. These properties include elastic modulus, hardness, and fracture toughness. Like other aspects of bone quality, matrix material properties are biologically-defined and can be disrupted in skeletal disease. While mineral and collagen have been investigated in greater detail, the contribution of noncollagenous proteins such as osteopontin to bone matrix material properties remains unclear. Several roles have been ascribed to osteopontin in bone, many of which have the potential to impact material properties. To elucidate the role of osteopontin in bone quality, we evaluated the structure, composition, and material properties of bone from osteopontin-deficient mice and wild-type littermates at several length scales. Most importantly, the results show that osteopontin deficiency causes a 30% decrease in fracture toughness, suggesting an important role for OPN in preventing crack propagation. This significant decline in fracture toughness is independent of changes in whole bone mass, structure, or matrix porosity. Using nanoindentation and quantitative backscattered electron imaging to evaluate osteopontin-deficient bone matrix at the micrometer level, we observed a significant reduction in elastic modulus and increased variability in calcium concentration. Matrix heterogeneity was also apparent at the ultrastructural level. In conclusion, we find that osteopontin is essential for the fracture toughness of bone, and reduced toughness in osteopontin-deficient bone may be related to the increased matrix heterogeneity observed at the micro-scale. By exploring the effects of osteopontin deficiency on bone matrix material properties, composition and organization, this study suggests that reduced fracture toughness is one mechanism by which loss of noncollagenous proteins contribute to bone fragility.


Subject(s)
Bone Density/physiology , Bone and Bones/metabolism , Bone and Bones/physiology , Osteopontin/deficiency , Osteopontin/metabolism , Animals , Bone Density/genetics , Calcium/metabolism , Elasticity/physiology , Fractures, Bone/metabolism , Male , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Osteopontin/genetics , Tensile Strength/physiology , X-Ray Microtomography
2.
Bone ; 46(5): 1267-74, 2010 May.
Article in English | MEDLINE | ID: mdl-19931661

ABSTRACT

We report the results of a series of experiments designed to determine the effects of ibandronate (Ibn) and risedronate (Ris) on a number of bone quality parameters in aged osteopenic rats to explain how bone material and bone mass may be affected by the dose of bisphosphonates (BP) and contribute to their anti-fracture efficacy. Eighteen-month old female rats underwent either ovariectomy or sham surgery. The ovariectomized (OVX) groups were left untreated for 2 months to develop osteopenia. Treatments started at 20 months of age as follows: sham and OVX control (treated with saline), OVX + risedronate 30 and 90 (30 or 90 microg/kg/dose), and OVX + ibandronate 30 and 90 (30 or 90 microg/kg/dose). The treatments were given monthly for 4 months by subcutaneous injection. At sacrifice at 24 months of age the 4th lumbar vertebra was used for microCT scans (bone mass, architecture, and degree of mineralization of bone, DMB) and histomorphometry, and the 6th lumbar vertebra, tibia, and femur were collected for biomechanical testing to determine bone structural and material strength, cortical fracture toughness, and tissue elastic modulus. The compression testing of the vertebral bodies (LVB6) was simulated using finite-element analysis (FEA) to also estimate the bone structural stiffness. Both Ibn and Ris dose-dependently increased bone mass and improved vertebral bone microarchitecture and mechanical properties compared to OVX control. Estimates of vertebral maximum stress from FEA were correlated with vertebral maximum load (r=0.5, p<0.001) and maximum stress (r=0.4, p<0.005) measured experimentally. Tibial bone bending modulus and cortical strength increased compared to OVX with both BP but no dose-dependent effect was observed. DMB and elastic modulus of trabecular bone were improved with Ibn 30 compared to OVX but were not affected in other BP-treated groups. DMB of tibial cortical bone showed no change with BP treatments. The fracture toughness examined in midshaft femurs did not change with BP even with the higher doses. In summary, the anti-fracture efficacy of BP is largely due to their preservation of bone mass and while the higher doses further improve the bone structural properties do not improve the localized bone material characteristics such as tissue strength, elastic modulus, and cortical toughness.


Subject(s)
Aging/physiology , Bone Density Conservation Agents/pharmacology , Bone and Bones/drug effects , Bone and Bones/physiology , Diphosphonates/pharmacology , Animals , Bone Density Conservation Agents/therapeutic use , Bone Diseases, Metabolic/drug therapy , Bone Diseases, Metabolic/metabolism , Bone Diseases, Metabolic/physiopathology , Bone and Bones/metabolism , Bone and Bones/physiopathology , Compressive Strength/drug effects , Diphosphonates/therapeutic use , Female , Finite Element Analysis , Lumbar Vertebrae/drug effects , Lumbar Vertebrae/metabolism , Lumbar Vertebrae/physiology , Lumbar Vertebrae/physiopathology , Ovariectomy , Rats , Rats, Inbred F344
3.
PLoS One ; 4(4): e5275, 2009.
Article in English | MEDLINE | ID: mdl-19357790

ABSTRACT

During development, growth factors and hormones cooperate to establish the unique sizes, shapes and material properties of individual bones. Among these, TGF-beta has been shown to developmentally regulate bone mass and bone matrix properties. However, the mechanisms that control postnatal skeletal integrity in a dynamic biological and mechanical environment are distinct from those that regulate bone development. In addition, despite advances in understanding the roles of TGF-beta signaling in osteoblasts and osteoclasts, the net effects of altered postnatal TGF-beta signaling on bone remain unclear. To examine the role of TGF-beta in the maintenance of the postnatal skeleton, we evaluated the effects of pharmacological inhibition of the TGF-beta type I receptor (TbetaRI) kinase on bone mass, architecture and material properties. Inhibition of TbetaRI function increased bone mass and multiple aspects of bone quality, including trabecular bone architecture and macro-mechanical behavior of vertebral bone. TbetaRI inhibitors achieved these effects by increasing osteoblast differentiation and bone formation, while reducing osteoclast differentiation and bone resorption. Furthermore, they induced the expression of Runx2 and EphB4, which promote osteoblast differentiation, and ephrinB2, which antagonizes osteoclast differentiation. Through these anabolic and anti-catabolic effects, TbetaRI inhibitors coordinate changes in multiple bone parameters, including bone mass, architecture, matrix mineral concentration and material properties, that collectively increase bone fracture resistance. Therefore, TbetaRI inhibitors may be effective in treating conditions of skeletal fragility.


Subject(s)
Bone and Bones/metabolism , Osteoblasts/metabolism , Osteoclasts/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/metabolism , Animals , Bone Density/drug effects , Bone Development/drug effects , Bone Matrix/metabolism , Bone Resorption/metabolism , Bone and Bones/anatomy & histology , Bone and Bones/cytology , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Core Binding Factor Alpha 1 Subunit/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Receptor, EphB4/metabolism , Receptor, Transforming Growth Factor-beta Type I
SELECTION OF CITATIONS
SEARCH DETAIL
...