Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 229: 117725, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33484850

ABSTRACT

Previous studies have shown that individuals with overweight and obesity may experience attentional biases and reduced inhibition toward food stimuli. However, evidence is scarce as to whether the attentional bias is present even before stimuli are consciously recognized. Moreover, it is not known whether or not differences in the underlying brain morphometry and connectivity may co-occur with attentional bias and impulsivity towards food in individuals with different BMIs. To address these questions, we asked fifty-three participants (age M = 23.2, SD = 2.9, 13 males) to perform a breaking Continuous Flash Suppression (bCFS) task to measure the speed of subliminal processing, and a Go/No-Go task to measure inhibition, using food and nonfood stimuli. We collected whole-brain structural magnetic resonance images and functional resting-state activity. A higher BMI predicted slower subliminal processing of images independently of the type of stimulus (food or nonfood, p = 0.001, εp2 = 0.17). This higher threshold of awareness is linked to lower grey matter (GM) density of key areas involved in awareness, high-level sensory integration, and reward, such as the orbitofrontal cortex [t = 4.55, p = 0.003], the right temporal areas [t = 4.18, p = 0.002], the operculum and insula [t = 4.14, p = 0.005] only in individuals with a higher BMI. In addition, individuals with a higher BMI exhibit a specific reduced inhibition to food in the Go/No-Go task [p = 0.02, εp2 = 0.02], which is associated with lower GM density in reward brain regions [orbital gyrus, t = 4.97, p = 0.005, and parietal operculum, t = 5.14, p < 0.001] and lower resting-state connectivity of the orbital gyrus to visual areas [fusiform gyrus, t = -4.64, p < 0.001 and bilateral occipital cortex, t = -4.51, p < 0.001 and t = -4.34, p < 0.001]. Therefore, a higher BMI is predictive of non food-specific slower visual subliminal processing, which is linked to morphological alterations of key areas involved in awareness, high-level sensory integration, and reward. At a late, conscious stage of visual processing a higher BMI is associated with a specific bias towards food and with lower GM density in reward brain regions. Finally, independently of BMI, volumetric variations and connectivity patterns in different brain regions are associated with variability in bCFS and Go/No-Go performances.


Subject(s)
Attentional Bias/physiology , Body Mass Index , Cerebral Cortex/physiology , Inhibition, Psychological , Nerve Net/physiology , Obesity/physiopathology , Adult , Cerebral Cortex/diagnostic imaging , Female , Food , Humans , Magnetic Resonance Imaging/methods , Male , Nerve Net/diagnostic imaging , Obesity/diagnostic imaging , Organ Size , Photic Stimulation/methods , Psychomotor Performance/physiology , Rest/physiology , Reward , Young Adult
2.
Neuropsychologia ; 79(Pt B): 246-55, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26164474

ABSTRACT

Emerging evidence indicates impairments in somatosensory function may be a major contributor to motor dysfunction associated with neurologic injury or disorders. However, the neuroanatomical substrates underlying the connection between aberrant sensory input and ineffective motor output are still under investigation. The primary somatosensory cortex (S1) plays a critical role in processing afferent somatosensory input and contributes to the integration of sensory and motor signals necessary for skilled movement. Neuroimaging and neurostimulation approaches provide unique opportunities to non-invasively study S1 structure and function including connectivity with other cortical regions. These research techniques have begun to illuminate casual contributions of abnormal S1 activity and connectivity to motor dysfunction and poorer recovery of motor function in neurologic patient populations. This review synthesizes recent evidence illustrating the role of S1 in motor control, motor learning and functional recovery with an emphasis on how information from these investigations may be exploited to inform stroke rehabilitation to reduce motor dysfunction and improve therapeutic outcomes.


Subject(s)
Electric Stimulation/methods , Movement Disorders/rehabilitation , Somatosensory Cortex/physiology , Humans , Neuroimaging
3.
Article in English | MEDLINE | ID: mdl-22256283

ABSTRACT

Humans experience the self as localized within their body. This aspect of bodily self-consciousness can be experimentally manipulated by exposing individuals to conflicting multisensory input, or can be abnormal following focal brain injury. Recent technological developments helped to unravel some of the mechanisms underlying multisensory integration and self-location, but the neural underpinnings are still under investigation, and the manual application of stimuli resulted in large variability difficult to control. This paper presents the development and evaluation of an MR-compatible stroking device capable of presenting moving tactile stimuli to both legs and the back of participants lying on a scanner bed while acquiring functional neuroimaging data. The platform consists of four independent stroking devices with a travel of 16-20 cm and a maximum stroking velocity of 15 cm/s, actuated over non-magnetic ultrasonic motors. Complemented with virtual reality, this setup provides a unique research platform allowing to investigate multisensory integration and its effects on self-location under well-controlled experimental conditions. The MR-compatibility of the system was evaluated in both a 3 and a 7 Tesla scanner and showed negligible interference with brain imaging. In a preliminary study using a prototype device with only one tactile stimulator, fMRI data acquired on 12 healthy participants showed visuo-tactile synchrony-related and body-specific modulations of the brain activity in bilateral temporoparietal cortex.


Subject(s)
Awareness/physiology , Neurosciences/methods , Robotics/methods , Sensation/physiology , Adult , Feedback, Sensory/physiology , Humans , Magnetic Resonance Imaging , Phantoms, Imaging , Physical Stimulation , Touch/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...