Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(19): 20648-20657, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764665

ABSTRACT

The typical spectrally limited laser pulse in the near-infrared region is narrow-band up to 40-50 fs. Its spectral width Δk is much smaller than the carrying wavenumber k0 (Δk ≪ k0) . For such kinds of pulses, on distances of a few diffraction lengths, the diffraction is of a Fresnel's type and their evolution can be described correctly in the frame of the well-known paraxial evolution equation. The technology established in 1985 of amplification through chirping of laser pulses triggered remarkable progress in laser optics along with the construction of femtosecond (fs) laser facilities producing high intensity fields of the order of 1015-1021 W/cm2. However, the duration of the pulse was quickly shortened from picoseconds down to 5-6 fs, which have a broad-band nature (Δk ∼ k0). The linear and nonlinear propagation dynamics of broad-band pulses is quite different form their narrow-band counterparts. Here, we review the appropriate theoretical approach to study the evolution of the pulse. Moreover, we shed light on the different diffraction regimes inherent to both narrow-band and broad-band laser pulses and compare them to unveil the main differences. Using this very method, in subsequent papers, we will investigate the influence of the dispersion and nonlinearity on the laser pulse propagation in isotropic media.

2.
ACS Omega ; 8(3): 3501-3508, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36713697

ABSTRACT

An impressive phenomenon of observed plasma instability and conical emission under the propagation of ultrashort laser pulses in the air is reported. The discussed novel findings demonstrating nonlinear effects are incapable to be explained in the standard spatiotemporal paraxial optics. Three main mechanisms are investigated. The first one is related to the nonlinear nonparaxial mechanisms for waveguiding of femtosecond pulses, and the second one considers the mechanism of single filament formation at weak ionization. The third mechanism demonstrates a new physical effect leading to collision ionization with intensities in the range of 1010-1011 W/cm2. Furthermore, a new ionization regime of instability is suggested at intensities below the critical thresholds for multiphoton and tunnel ionization. The experimental results and findings are supported by theoretical analyses and numerical simulations.

3.
Materials (Basel) ; 14(24)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34947106

ABSTRACT

The use of laser processing for the creation of diverse morphological patterns onto the surface of polymer scaffolds represents a method for overcoming bacterial biofilm formation and inducing enhanced cellular dynamics. We have investigated the influence of ultra-short laser parameters on 3D-printed poly-ε-caprolactone (PCL) and poly-ε-caprolactone/hydroxyapatite (PCL/HA) scaffolds with the aim of creating submicron geometrical features to improve the matrix biocompatibility properties. Specifically, the present research was focused on monitoring the effect of the laser fluence (F) and the number of applied pulses (N) on the morphological, chemical and mechanical properties of the scaffolds. SEM analysis revealed that the femtosecond laser treatment of the scaffolds led to the formation of two distinct surface geometrical patterns, microchannels and single microprotrusions, without triggering collateral damage to the surrounding zones. We found that the microchannel structures favor the hydrophilicity properties. As demonstrated by the computer tomography results, surface roughness of the modified zones increases compared to the non-modified surface, without influencing the mechanical stability of the 3D matrices. The X-ray diffraction analysis confirmed that the laser structuring of the matrices did not lead to a change in the semi-crystalline phase of the PCL. The combinations of two types of geometrical designs-wood pile and snowflake-with laser-induced morphologies in the form of channels and columns are considered for optimizing the conditions for establishing an ideal scaffold, namely, precise dimensional form, mechanical stability, improved cytocompatibility and antibacterial behavior.

4.
Polymers (Basel) ; 13(17)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34503043

ABSTRACT

We report on a new approach toward a laser-assisted modification of biocompatible polydimethylsiloxane (PDMS) elastomers relevant to the fabrication of stretchable multielectrode arrays (MEAs) devices for neural interfacing technologies. These applications require high-density electrode packaging to provide a high-resolution integrating system for neural stimulation and/or recording. Medical grade PDMS elastomers are highly flexible with low Young's modulus < 1 MPa, which are similar to soft tissue (nerve, brain, muscles) among the other known biopolymers, and can easily adjust to the soft tissue curvatures. This property ensures tight contact between the electrodes and tissue and promotes intensive development of PDMS-based MEAs interfacing devices in the basic neuroscience, neural prosthetics, and hybrid bionic systems, connecting the human nervous system with electronic or robotic prostheses for restoring and treating neurological diseases. By using the UV harmonics 266 and 355 nm of Nd:YAG laser medical grade PDMS elastomer is modified by ns-laser ablation in water. A new approach of processing is proposed to (i) activate the surface and to obtain tracks with (ii) symmetric U-shaped profiles and (iii) homogeneous microstructure This technology provides miniaturization of the device and successful functionalization by electroless metallization of the tracks with platinum (Pt) without preliminary sensitization by tin (Sn) and chemical activation by palladium (Pd). As a result, platinum black layers with a cauliflower-like structure with low values of sheet resistance between 1 and 8 Ω/sq are obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...