Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 18(5)2021 04 06.
Article in English | MEDLINE | ID: mdl-33725672

ABSTRACT

Objective. Recent results have shown the potentials of neural interfaces to provide sensory feedback to subjects with limb amputation increasing prosthesis usability. However, their advantages for decoding motor control signals over current methods based on electromyography (EMG) are still debated. In this study we compared a standard EMG-based method with approaches that use peripheral intraneural data to infer distinct levels of grasping force and velocity in a trans-radial amputee.Approach. Surface EMG (three channels) and intraneural signals (collected with transverse intrafascicular multichannel electrodes, TIMEs, 56 channels) were simultaneously recorded during the amputee's intended grasping movements. We sorted single unit activity (SUA) from each neural signal and then we identified the most informative units. EMG envelopes were extracted from the recorded EMG signals. A reference support vector machine (SVM) classifier was used to map EMG envelopes into desired force and velocity levels. Two decoding approaches using SUA were then tested and compared to the EMG-based reference classifier: (a) SVM classification of firing rates into desired force and velocity levels; (b) reconstruction of covariates (the grasp cue level or EMG envelopes) from neural data and use of covariates for classification into desired force and velocity levels.Main results.Using EMG envelopes as reconstructed covariates from SUA yielded significantly better results than the other approaches tested, with performance similar to that of the EMG-based reference classifier, and stable over three different recording days. Of the two reconstruction algorithms used in this approach, a linear Kalman filter and a nonlinear point process adaptive filter, the nonlinear filter gave better results.Significance.This study presented a new effective approach for decoding grasping force and velocity from peripheral intraneural signals in a trans-radial amputee, which relies on using SUA to reconstruct EMG envelopes. Being dependent on EMG recordings only for the training phase, this approach can fully exploit the advantages of implanted neural interfaces and potentially overcome, in the medium to long term, current state-of-the-art methods. (Clinical trial's registration number: NCT02848846).


Subject(s)
Amputees , Artificial Limbs , Algorithms , Electromyography , Hand , Hand Strength , Humans , Upper Extremity
2.
J Pers Med ; 10(2)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365890

ABSTRACT

Neurodegenerative processes of various types of dementia start years before symptoms, but the presence of a "neural reserve", which continuously feeds and supports neuroplastic mechanisms, helps the aging brain to preserve most of its functions within the "normality" frame. Mild cognitive impairment (MCI) is an intermediate stage between dementia and normal brain aging. About 50% of MCI subjects are already in a stage that is prodromal-to-dementia and during the following 3 to 5 years will develop clinically evident symptoms, while the other 50% remains at MCI or returns to normal. If the risk factors favoring degenerative mechanisms are modified during early stages (i.e., in the prodromal), the degenerative process and the loss of abilities in daily living activities will be delayed. It is therefore extremely important to have biomarkers able to identify-in association with neuropsychological tests-prodromal-to-dementia MCI subjects as early as possible. MCI is a large (i.e., several million in EU) and substantially healthy population; therefore, biomarkers should be financially affordable, largely available and non-invasive, but still accurate in their diagnostic prediction. Neurodegeneration initially affects synaptic transmission and brain connectivity; methods exploring them would represent a 1st line screening. Neurophysiological techniques able to evaluate mechanisms of synaptic function and brain connectivity are attracting general interest and are described here. Results are quite encouraging and suggest that by the application of artificial intelligence (i.e., learning-machine), neurophysiological techniques represent valid biomarkers for screening campaigns of the MCI population.

SELECTION OF CITATIONS
SEARCH DETAIL
...