Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 122(19): 4622-4627, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29684267

ABSTRACT

The evaporation of a dicationic ionic liquid, 1,3-bis(3-methylimidazolium-1-yl)propane bis(trifluoromethanesulfonyl)amide ([C3(MIm)22+][Tf2N-]2), was studied by Knudsen effusion mass spectrometry. Its evaporation is accompanied by a partial thermal decomposition producing monocationic ionic liquids, 1,3-dimethylimidazolium and 1-(2-propenyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)amides, as volatile products. This decomposition does not affect the vaporization characteristics of [C3(MIm)22+][Tf2N-]2, which were established to be as follows. The vaporization enthalpy (550 K) is equal to (155.5 ± 3.2) kJ·mol-1; the saturated vapor pressure is described by the equation ln( p/Pa) = -(18699 ± 381)/( T/K) + (30.21 ± 0.82) in the range of 508-583 K. 1,3-Bis(3-methylimidazolium-1-yl)propane bis(trifluoromethanesulfonyl)amide is the first dicationic ionic liquid, the vaporization characteristics of which were determined with an acceptable accuracy.

2.
Chem Asian J ; 12(10): 1075-1086, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28281332

ABSTRACT

A series of novel highly soluble double-caged [60]fullerene derivatives were prepared by means of lithium-salt-assisted [2+3] cycloaddition. The bispheric molecules feature rigid linking of the fullerene spheres through a four-membered cycle and a pyrrolizidine bridge with an ester function CO2 R (R=n-decyl, n-octadecyl, benzyl, and n-butyl; compounds 1 a-d, respectively), as demonstrated by NMR spectroscopy and X-ray diffraction. Cyclic voltammetry studies revealed three closely overlapping pairs of reversible peaks owing to consecutive one-electron reductions of fullerene cages, as well as an irreversible oxidation peak attributed to abstraction of an electron from the nitrogen lone-electron pair. Owing to charge delocalization over both carbon cages, compounds 1 a-d are characterized by upshifted energies of frontier molecular orbitals, a narrowed bandgap, and reduced electron-transfer reorganization energy relative to pristine C60 . Neat thin films of the n-decyl compound 1 a demonstrated electron mobility of (1.3±0.4)×10-3  cm2 V-1 s-1 , which was comparable to phenyl-C61 -butyric acid methyl ester (PCBM) and thus potentially advantageous for organic solar cells (OSC). Application of 1 in OSC allowed a twofold increase in the power conversion efficiencies of as-cast poly(3-hexylthiophene-2,5-diyl) (P3HT)/1 devices relative to the as-cast P3HT/PCBM ones. This is attributed to the good solubility of 1 and their enhanced charge-transport properties - both intramolecular, owing to tightly linked fullerene cages, and intermolecular, owing to the large number of close contacts between the neighboring double-caged molecules. Test P3HT/1 OSCs demonstrated power-conversion efficiencies up to 2.6 % (1 a). Surprisingly low optimal content of double-caged fullerene acceptor 1 in the photoactive layer (≈30 wt %) favored better light harvesting and carrier transport owing to the greater content of P3HT and its higher degree of crystallinity.

3.
J Phys Chem A ; 121(1): 113-121, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-27982596

ABSTRACT

Solution phase photochemical reaction of fullerene with perfluorinated alkyldiiodides I-RF-I can be efficiently initiated by visible range irradiation that targets solely the fullerene component. Photoinduced electron transfer from fullerene onto the diiodide component effects dissociative formation of alkyl radicals RFI• subsequently consumed by C60 to give the principal detectable radical intermediate C60RFI•. Experimentally established second-order kinetics with respect to the fullerene concentration evidence that fullerene plays its two roles of photocatalyst and reactant in a decoupled fashion, which suggests its catalytic ability to be of potential use in more complex photochemical systems. The main final product of the photochemical transformation observed is the singly linked dimer of the intermediates, I-RF-C60-C60-RF-I. Side reactions of C60RFI• with the environment lead to quenching of the unpaired electron density by ortho- or para- attachment of hydrogen or iodine. The outlined kinetic findings are discussed in detail.

SELECTION OF CITATIONS
SEARCH DETAIL
...