Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 16(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125127

ABSTRACT

The use of 3D printing technology for manufacturing new products based on sustainable materials enables one to take advantage of secondary raw materials derived from recycling. This work investigates the structural performances of 3D printing composite filaments based on polylactic acid (PLA), as a matrix, reinforced by recycled carbon fiber (rCF). Carbon fibers were recovered from industrial scraps by a patented thermal process and used to produce thermoplastic composite filaments for additive manufacturing without any additional treatment and additives. The influence of the recovered carbon fiber (rCF) content on the thermal properties, mechanical properties and microstructure of the composites was studied in the range of 3-20 wt%. The recorded TGA curves exhibited a one-stage weight loss within the temperature range 290-380 °C for all samples and the residual rCF content was in good agreement with the theoretical fiber loading. The Young modulus of the extruded filaments strongly increased below a critical content (5 wt%), while at higher content the improvement was reduced. An increase in the storage modulus of 54% compared to neat PLA 3D printed sample resulted in a printed specimen with a higher rCF content. SEM images highlighted a strong rCF prevailing alignment in the direction of the extrusion flow, creating almost unidirectional reinforcement inside the filament. These findings suggest that homogeneous composite filaments reinforced with well-dispersed recycled CF without additional chemical modification and additives are suitable materials for additive manufacturing. The effect of rCF topological distribution within the material on the mechanical performances has been discussed, highlighting that the isolated fibers could efficiently transfer loads with respect to the percolated 3D network and have been correlated with the microstructure.

2.
Sci Rep ; 14(1): 14998, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951136

ABSTRACT

Herein, additive manufacturing, which is extremely promising in different sectors, has been adopted in the electrical energy storage field to fabricate efficient materials for supercapacitor applications. In particular, Al2O3-, steel-, and Cu-based microparticles have been used for the realization of 3D self-assembling materials covered with reduced graphene oxide to be processed through additive manufacturing. Functionalization of the particles with amino groups and a subsequent "self-assembly" step with graphene oxide, which was contextually partially reduced to rGO, was carried out. To further improve the electrical conductivity and AM processability, the composites were coated with a polyaniline-dodecylbenzene sulfonic acid complex and further blended with PLA. Afterward, they were extruded in the form of filaments, printed through the fused deposition modeling technique, and assembled into symmetrical solid-state devices. Electrochemical tests showed a maximum mass capacitance of 163 F/g, a maximum energy density of 15 Wh/Kg at 10 A/g, as well as good durability (85% capacitance retention within 5000 cycles) proving the effectiveness of the preparation and the efficiency of the as-manufactured composites.

3.
Waste Manag ; 33(3): 672-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22749720

ABSTRACT

An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850-1000°C, holding all the other operational parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid-gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000°C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature.


Subject(s)
Gases , Refuse Disposal/methods , Rubber , Solid Waste , Carbon , Carbon Dioxide , Carbon Monoxide , Hot Temperature , Hydrogen , Methane , Pressure , Steam
SELECTION OF CITATIONS
SEARCH DETAIL