Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999626

ABSTRACT

Galdieria sulphuraria is a thermo-acidophilic microalga belonging to the Cyanidiophyceae (Rhodophyta) class. It thrives in extreme environments, such as geothermal sulphuric springs, with low pH, high temperatures, and high salinity. This microalga utilises various growth modes, including autotrophic, heterotrophic, and mixotrophic, enabling it to exploit diverse organic carbon sources. Remarkably, G. sulphuraria survives and produces a range of bioactive compounds in these harsh conditions. Moreover, it plays a significant role in environmental remediation by removing nutrients, pathogens, and heavy metals from various wastewater sources. It can also recover rare earth elements from mining wastewater and electronic waste. This review article explores the diverse applications and significant contributions of G. sulphuraria.

2.
Microorganisms ; 10(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36363730

ABSTRACT

Rare earth elements (REEs) are essential components of modern technologies and are often challenging to acquire from natural resources. The demand for REEs is so high that there is a clear need to develop efficient and environmentally-friendly recycling methods. In the present study, freeze-dried cells of the extremophile Galdieria sulphuraria were employed to recover yttrium, cerium, europium, and terbium from quaternary-metal aqueous solutions. The biosorption capacity of G. sulphuraria freeze-dried algal biomass was tested at different pHs, contact times, and biosorbent dosages. All rare earths were biosorbed in a more efficient way by the lowest dose of biosorbent, at pH 4.5, within 30 min; the highest removal rate of cerium was recorded at acidic pH (2.5) and after a longer contact time, i.e., 360 min. This study confirms the potential of freeze-dried cells of G. sulphuraria as innovative ecological biosorbents in technological applications for sustainable recycling of metals from e-waste and wastewater.

3.
Plants (Basel) ; 11(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35631801

ABSTRACT

The lanthanides are among the rare earth elements (REEs), which are indispensable constituents of modern technologies and are often challenging to acquire from natural resources. The demand for REEs is so high that there is a clear need to develop efficient and environmentally-friendly recycling methods. In the present study, living cells of the extremophile Galdieria sulphuraria were used to remove four REEs, Yttrium, Cerium, Europium, and Terbium, from single- and quaternary-metal aqueous solutions. Two different strains, SAG 107.79 and ACUF 427, were exposed to solutions buffered at pH 2.5, 3.5, 4.5, and 5.5. Our data demonstrated that the removal performances were strain and pH dependent for all metal ions. At lower pH, ACUF 427 outperformed SAG 107.79 considerably. By increasing the pH of the solutions, there was a significant surge in the aqueous removal performance of both strains. The same trend was highlighted using quaternary-metal solutions, even if the quantities of metal removed were significantly lower. The present study provided the first insight into the comparative removal capacity of the Galdieria sulphuraria strains. The choice of the appropriate operational conditions such as the pH of the metal solutions is an essential step in developing efficient, rapid, and straightforward biological methods for recycling REEs.

4.
Plants (Basel) ; 10(11)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34834705

ABSTRACT

Over the past decades, wastewater research has increasingly focused on the use of microalgae as a tool to remove contaminants, entrapping nutrients, and whose biomass could provide both material and energy resources. This review covers the advances in the emerging research on the use in wastewater sector of thermoacidophilic, low-lipid microalgae of the genus Galdieria, which exhibit high content of protein, reserve carbohydrates, and other potentially extractable high-value compounds. The natural tolerance of Galdieria for high toxic environments and hot climates recently made it a key player in a single-step process for municipal wastewater treatment, biomass cultivation and production of energetic compounds using hydrothermal liquefaction. In this system developed in New Mexico, Galdieria proved to be a highly performing organism, able to restore the composition of the effluent to the standards required by the current legislation for the discharge of treated wastewater. Future research efforts should focus on the implementation, in the context of wastewater treatment, of more energetically efficient cultivation systems, potentially capable of generating water with increasingly higher purity levels.

5.
Plants (Basel) ; 10(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34834730

ABSTRACT

Polyextremophilic red algae, which belong to the class Cyanidiophyceae, are adapted to live in geothermal and volcanic sites. These sites often have very high concentrations of heavy and precious metals. In this study, we assessed the capacity of three strains of Galdieria (G. maxima, G. sulphuraria, and G. phlegrea) and one strain of Cyanidiumcaldarium to tolerate different concentrations of precious metals, such as palladium (Cl4K2Pd) and gold (AuCl4K) by monitoring algal growths in cultures exposed to metals, and we investigated the algae potential oxidative stress induced by the metals. This work provides further understanding of metals responses in the Cyanidiophyceae, as this taxonomic class is developed as a biological refinement tool.

6.
Plants (Basel) ; 9(2)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32054108

ABSTRACT

Galdieria maxima is a polyextremophilic alga capable of diverse metabolic processes. Ammonia is widely used in culture media typical of laboratory growth. Recent reports that this species can grow on wastes promote the concept that G. maxima might have biotechnological utility. Accordingly, there is a need to know the range of pH levels that can support G. maxima growth in a given nitrogen source. Here, we examined the combined effect of pH and nitrate/ammonium source on the growth and long-term response of the photochemical process to a pH gradient in different G. maxima strains. All were able to use differing nitrogen sources, despite both the growth rate and photochemical activity were significantly affected by the combination with the pH. All strains acidified the NH4+-medium (pH < 3) except G. maxima IPPAS P507. Under nitrate at pH ≥ 6.5, no strain was able to acidify the medium; noteworthy, G. maxima ACUF551 showed a good growth performance under nitrate at pH 5, despite the alkalization of the medium.

7.
Plants (Basel) ; 8(2)2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30791384

ABSTRACT

The RADiation sensitive52 (RAD52) protein catalyzes the pairing between two homologous DNA sequences' double-strand break repair and meiotic recombination, mediating RAD51 loading onto single-stranded DNA ends, and initiating homologous recombination and catalyzing DNA annealing. This article reports the characterization of RAD52 homologs in the thermo-acidophilic Cyanidiophyceae whose genomes have undergone extensive sequencing. Database mining, phylogenetic inference, prediction of protein structure and evaluation of gene expression were performed in order to determine the functionality of the RAD52 protein in Cyanidiophyceae. Its current function in Cyanidiophytina could be related to stress damage response for thriving in hot and acidic environments as well as to the genetic variability of these algae, in which, conversely to extant Rhodophyta, sexual mating was never observed.

8.
Extremophiles ; 22(5): 713-723, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29779132

ABSTRACT

Cyanidiophytina are a group of polyextremophilic red algae with a worldwide, but discontinuous colonization. They are restricted to widely dispersed hot springs, geothermal habitats, and also some human-altered environments. Cyanidiophytina are predominant where pH is prohibitive for the majority of eukaryotes (pH 0.5-3). Turkey is characterized by areas rich in volcanic activity separated by non-volcanic areas. Here we show that Cyanidiophycean populations are present in thermal baths located around Turkey on neutral/alkaline soils. All known genera and species within Cyanidiophytina were detected in Turkey, including Galdieria phlegrea, recorded up to now only in Italian Phlegrean Fields. By phylogenetic analyses, Turkish G. sulphuraria strains are monophyletic with Italian and Icelandic strains, and with Russian G. daedala strains. G. maxima from Turkey clustered with Icelandic, Kamchatka, and Japanese populations. The discovery of Cyanidiophytina in non-acidic Turkish soils raises new questions about the ecological boundaries of these extremophilic algae. This aids in the understanding of the dispersal abilities and distribution patterns of this ecologically and evolutionarily interesting group of algae.


Subject(s)
Hydrothermal Vents/microbiology , Rhodophyta/genetics , Acids/analysis , Biodiversity , Hydrothermal Vents/chemistry , Phylogeny , Rhodophyta/classification , Rhodophyta/physiology , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL
...