Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Light Sci Appl ; 8: 122, 2019.
Article in English | MEDLINE | ID: mdl-31871674

ABSTRACT

Optical frequency synthesizers have widespread applications in optical spectroscopy, frequency metrology, and many other fields. However, their applicability is currently limited by size, cost, and power consumption. Silicon photonics technology, which is compatible with complementary-metal-oxide-semiconductor fabrication processes, provides a low-cost, compact size, lightweight, and low-power-consumption solution. In this work, we demonstrate an optical frequency synthesizer using a fully integrated silicon-based tunable laser. The synthesizer can be self-calibrated by tuning the repetition rate of the internal mode-locked laser. A 20 nm tuning range from 1544 to 1564 nm is achieved with ~10-13 frequency instability at 10 s averaging time. Its flexibility and fast reconfigurability are also demonstrated by fine tuning the synthesizer and generating arbitrary specified patterns over time-frequency coordinates. This work promotes the frequency stability of silicon-based integrated tunable lasers and paves the way toward chip-scale low-cost optical frequency synthesizers.

2.
Opt Express ; 27(3): 3542-3556, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732372

ABSTRACT

We present a CMOS-compatible, Q-switched mode-locked integrated laser operating at 1.9 µm with a compact footprint of 23.6 × 0.6 × 0.78mm. The Q-switching rate is 720 kHz, the mode-locking rate is 1.2 GHz, and the optical bandwidth is 17nm, which is sufficient to support pulses as short as 215 fs. The laser is fabricated using a silicon nitride on silicon dioxide 300-mm wafer platform, with thulium-doped Al2O3 glass as a gain material deposited over the silicon photonics chip. An integrated Kerr-nonlinearity-based artificial saturable absorber is implemented in silicon nitride. A broadband (over 100 nm) dispersion-compensating grating in silicon nitride provides sufficient anomalous dispersion to compensate for the normal dispersion of the other laser components, enabling femtosecond-level pulses. The laser has no off-chip components with the exception of the optical pump, allowing for easy co-integration of numerous other photonic devices such as supercontinuum generation and frequency doublers which together potentially enable fully on-chip frequency comb generation.

3.
Nat Commun ; 9(1): 3009, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30068975

ABSTRACT

Many optical systems require broadband filters with sharp roll-offs for efficiently splitting or combining light across wide spectra. While free space dichroic filters can provide broadband selectivity, on-chip integration of these high-performance filters is crucial for the scalability of photonic applications in multi-octave interferometry, spectroscopy, and wideband wavelength-division multiplexing. Here we present the theory, design, and experimental characterization of integrated, transmissive, 1 × 2 port dichroic filters using spectrally selective waveguides. Mode evolution through adiabatic transitions in the demonstrated filters allows for single cutoff and flat-top responses with low insertion losses and octave-wide simulated bandwidths. Filters with cutoffs around 1550 and 2100 nm are fabricated on a silicon-on-insulator platform with standard complementary metal-oxide-semiconductor processes. A filter roll-off of 2.82 dB nm-1 is achieved while maintaining ultra-broadband operation. This new class of nanophotonic dichroic filters can lead to new paradigms in on-chip communications, sensing, imaging, optical synthesis, and display applications.

4.
Opt Express ; 25(15): 18058-18065, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28789295

ABSTRACT

An optically-pumped, integrated distributed feedback laser is demonstrated using a CMOS compatible process, where a record-low-temperature deposited gain medium enables integration with active devices such as modulators and detectors. A pump threshold of 24.9 mW and a slope efficiency of 1.3 % is demonstrated at the lasing wavelength of 1552.98 nm. The rare-earth-doped aluminum oxide, used as the gain medium in this laser, is deposited by a substrate-bias-assisted reactive sputtering process. This process yields optical quality films with 0.1 dB/cm background loss at the deposition temperature of 250 °C, and therefore is fully compatible as a back-end-of-line CMOS process. The aforementioned laser's performance is comparable to previous lasers having gain media fabricated at much higher temperatures (> 550 °C). This work marks a crucial step towards monolithic integration of amplifiers and lasers in silicon microphotonic systems.

5.
Opt Lett ; 42(6): 1181-1184, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28295078

ABSTRACT

Mid-infrared laser sources are of great interest for various applications, including light detection and ranging, spectroscopy, communication, trace-gas detection, and medical sensing. Silicon photonics is a promising platform that enables these applications to be integrated on a single chip with low cost and compact size. Silicon-based high-power lasers have been demonstrated at 1.55 µm wavelength, while in the 2 µm region, to the best of our knowledge, high-power, high-efficiency, and monolithic light sources have been minimally investigated. In this Letter, we report on high-power CMOS-compatible thulium-doped distributed feedback and distributed Bragg reflector lasers with single-mode output powers up to 267 and 387 mW, and slope efficiencies of 14% and 23%, respectively. More than 70 dB side-mode suppression ratio is achieved for both lasers. This work extends the applicability of silicon photonic microsystems in the 2 µm region.

6.
Opt Express ; 23(4): 5253-76, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25836558

ABSTRACT

A model for terahertz (THz) generation by optical rectification using tilted-pulse-fronts is developed. It simultaneously accounts for in two spatial dimensions (2-D) (i) the spatio-temporal variations of the optical pump pulse imparted by the tilted-pulse-front setup, (ii) the nonlinear coupled interaction of THz and optical radiation, (iii) self-phase modulation and (iv) stimulated Raman scattering. The model is validated by quantitative agreement with experiments and analytic calculations. We show that the optical pump beam is significantly broadened in the transverse-momentum (kx) domain as a consequence of its spectral broadening due to THz generation. In the presence of this large frequency and transverse-momentum (or angular) spread, group velocity dispersion causes a spatio-temporal break-up of the optical pump pulse which inhibits further THz generation. The implications of these effects on energy scaling and optimization of optical-to-THz conversion efficiency are discussed. This suggests the use of optical pump pulses with elliptical beam profiles for large optical pump energies. Furthermore, it is seen that optimization of the setup is highly dependent on optical pump conditions. Trade-offs in optimizing the optical-to-THz conversion efficiency on the spatial and spectral properties of THz radiation are discussed to guide the development of such sources.

7.
Opt Express ; 20(4): 4085-101, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22418167

ABSTRACT

Results of a self-consistent ultrafast study of nonlinear optical properties of silicon nanowaveguides using heterodyne pump-probe technique are reported. The two-photon absorption coefficient and free-carrier absorption effective cross-section were determined to be 0.68cm/GW, and 1.9x10(-17) cm2, respectively and the Kerr coefficient and free-carrier-induced refractive index change 0.32x10(-13) cm2/W, and -5.5x10(-21) cm3, respectively. The effects of the proton bombardment on the linear loss and the carrier lifetime of the devices were also studied. Carrier lifetime reduction from 330ps to 33ps with a linear loss of only 14.8dB/cm was achieved using a proton bombardment level of 10(15)/cm2.

8.
Opt Express ; 20(4): 4102-13, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22418168

ABSTRACT

Coherent pulse interleaving implemented in planar waveguide technology is presented as a compact and robust solution to generate high repetition rate frequency combs. We demonstrate a 10 GHz pulse train from an Er-doped femtosecond fiber laser that is coupled into waveguide interleavers and multiplied in repetition rate by a factor of 16. With thermal tuning of the chip elements, we achieve optical and RF sidemode suppression levels of at least -30 dB.

9.
Opt Express ; 20(4): 4454-69, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22418205

ABSTRACT

Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy. Photonic ADCs, which perform sampling using ultra-stable optical pulse trains generated by mode-locked lasers, have been investigated for many years as a promising approach to overcome the jitter problem and bring ADC performance to new levels. This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits using a photonic ADC built from discrete components. This accuracy corresponds to a timing jitter of 15 fs - a 4-5 times improvement over the performance of the best electronic ADCs which exist today. On the way towards an integrated photonic ADC, a silicon photonic chip with core photonic components was fabricated and used to digitize a 10 GHz signal with 3.5 effective bits. In these experiments, two wavelength channels were implemented, providing the overall sampling rate of 2.1 GSa/s. To show that photonic ADCs with larger channel counts are possible, a dual 20-channel silicon filter bank has been demonstrated.

10.
Opt Express ; 19(1): 306-16, 2011 Jan 03.
Article in English | MEDLINE | ID: mdl-21263570

ABSTRACT

We report the fabrication of a reconfigurable wide-band twenty-channel second-order dual filterbank, defined on a silicon-on-insulator (SOI) platform, with tunable channel spacing and 20 GHz single-channel bandwidth. We demonstrate the precise tuning of eleven (out of the twenty) channels, with a channel spacing of 124 GHz (~1 nm) and crosstalk between channels of about -45 dB. The effective thermo-optic tuning efficiency is about 27 µW/GHz/ring. A single channel of a twenty-channel counter-propagating filterbank is also demonstrated, showing that both propagating modes exhibit identical filter responses. Considerations about thermal crosstalk are also presented. These filterbanks are suitable for on-chip wavelength-division-multiplexing applications, and have the largest-to-date reported number of channels built on an SOI platform.

11.
Appl Opt ; 49(29): 5577-82, 2010 Oct 10.
Article in English | MEDLINE | ID: mdl-20935704

ABSTRACT

We demonstrate a high-repetition-rate soliton fiber laser that is based on highly doped anomalously dispersive erbium-doped fiber. By splicing an 11 mm single-mode fiber to the erbium-doped fiber, the thermal damage of the butt-coupled saturable Bragg reflector (SBR) is overcome. The laser generates 187 fs pulses at a repetition rate of 967 MHz with a measured long-term stability of more than 60 h.

12.
Opt Express ; 18(5): 4948-60, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20389506

ABSTRACT

The carrier-envelope phase dynamics of few-cycle octave-spanning Ti:sapphire lasers are analyzed based on a numerical one-dimensional dispersion-managed laser model. The dominant contribution to the carrier-envelope phase shift with respect to intracavity energy arises from the asymmetric impact of self-steepening on pulse formation and laser output. We show that this term is larger by a factor of four than the energy-dependent round trip phase and is thus more significant than in the corresponding result for conventional soliton lasers. Frequency shifts due to the Raman effect are studied and found to be of minor impact for octave-spanning lasers.

13.
Opt Lett ; 33(19): 2221-3, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18830358

ABSTRACT

We demonstrate a soliton fiber laser based on an anomalously dispersive erbium-doped fiber butt-coupled to a saturable absorber mirror for passive mode locking. The laser generates 180 fs pulses at a repetition rate of 491 MHz and exhibits a timing jitter as low as 20 fs over the frequency range 1 kHz-10 MHz.

14.
Opt Express ; 16(16): 12387-96, 2008 Aug 04.
Article in English | MEDLINE | ID: mdl-18679515

ABSTRACT

We report the observation of photoluminescence produced by the recombination of free carriers generated via continuous-wave (CW) two-photon absorption (TPA) in a packaged, low-confinement (Gamma approximately 0.5%) InGaAsP/InP quantum-well slab-coupled optical waveguide amplifier (SCOWA) having a saturation output power of 0.8 W and 1/e-mode-field diameters of 5 x 7 microm. Photoluminescence power measured at the wavelength corresponding to the bandgap wavelength of the SCOWA's InGaAsP waveguide (lambda(G) approximately 1040 nm) exhibits a quadratic dependence on the amplifier's 1540-nm output power. Comparison between measured and simulated CW gain saturation data reveals that the combination of TPA and TPA-generated free-carrier absorption (FCA) limits the CW output intensity of high-power, low-confinement semiconductor optical amplifiers and semiconductor lasers.


Subject(s)
Amplifiers, Electronic , Computer-Aided Design , Lasers , Models, Theoretical , Optics and Photonics/instrumentation , Semiconductors , Computer Simulation , Equipment Design , Equipment Failure Analysis , Photons
15.
Opt Express ; 16(5): 3288-92, 2008 Mar 03.
Article in English | MEDLINE | ID: mdl-18542416

ABSTRACT

We present a novel characterization method for semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI) switches which combines a pump-probe measurement with an interferometer bias scan. In addition to a wealth of information on the switching dynamics for all operating points of the switch, we can create an extinction map to pinpoint regions of highest extinction for optimizing all-optical ultrafast switching. We experimentally verify the accuracy of this characterization method by performing a wavelength characterization at the optimal bias point and a nearby, non-optimal point. A 1-dB penalty was observed.


Subject(s)
Communication , Computer-Aided Design , Fiber Optic Technology/instrumentation , Interferometry/instrumentation , Models, Theoretical , Semiconductors , Computer Simulation , Equipment Design , Equipment Failure Analysis
16.
Opt Express ; 16(8): 5218-26, 2008 Apr 14.
Article in English | MEDLINE | ID: mdl-18542624

ABSTRACT

We present a systematic study of Mach-Zehnder silicon optical modulators based on carrier-injection. Detailed comparisons between modeling and measurement results are made with good agreement obtained for both DC and AC characteristics. A figure of merit, static VpiL, as low as 0.24Vmm is achieved. The effect of carrier lifetime variation with doping concentration is explored and found to be important for the modulator characteristics.


Subject(s)
Computer-Aided Design , Models, Theoretical , Optics and Photonics/instrumentation , Silicon/chemistry , Telecommunications/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis
17.
Opt Lett ; 33(9): 959-61, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18451952

ABSTRACT

Generation of low-timing-jitter 150 fs pulse trains at 1560 nm with 2 GHz repetition rate is demonstrated by locking a 200 MHz fundamental polarization additive-pulse mode-locked erbium fiber laser to high-finesse external Fabry-Perot cavities. The timing jitter and relative intensity noise of the repetition-rate multiplied pulse train are investigated.

18.
Opt Express ; 16(23): 19221-31, 2008 Nov 10.
Article in English | MEDLINE | ID: mdl-19582014

ABSTRACT

We assess the scaling potential of high repetition rate, passively mode-locked erbium-doped soliton lasers. Our analysis focuses on three recently demonstrated lasers using saturable Bragg reflectors (SBR) as the mode-locking element. We use the soliton Area theorem to establish the limitations to increasing the repetition rate based on insufficient intracavity pulse energy, SBR properties, and dispersion engineering. Finally, we examine possible approaches to alleviate these limitations by changing the laser's structure and composition.


Subject(s)
Lasers, Solid-State , Models, Theoretical , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
19.
Opt Lett ; 32(11): 1566-8, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17546190

ABSTRACT

A fundamentally mode-locked soliton Er-fiber laser generating 167 fs pulses at 194 MHz via polarization additive-pulse mode locking is demonstrated. This simple, compact, and high repetition rate source exhibits a low timing jitter of 18 fs [1 kHz, 10 MHz] and the lowest relative intensity noise of less than 0.003% [1 kHz, 10 MHz] observed from an Er-fiber laser.

20.
Opt Lett ; 31(17): 2571-3, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16902622

ABSTRACT

We propose and demonstrate a multistage design for microphotonic add-drop filters that provides reduced drop-port loss and relaxed tolerances for achieving high in-band extinction. As a result, the first microring-resonator filters with a rectangular notch stopband in the through port (to our knowledge) are shown, with extinctions exceeding 50 dB. Reaching 30 dB beyond previous results, without postfabrication trimming, such extinction levels open the door to microphotonic notch circuits for spectroscopy, wavelength conversion, and quantum cryptography applications. Combined with a low-loss, high-index-contrast electromagnetic design in SiN and frequency-matched microring resonators, this approach led to the first demonstration of flattop microphotonic filters meeting the stringent criteria for high-spectral-efficiency integrated add-drop multiplexers. The 40 GHz wide filters show a 20 nm free spectral range, 2 dB drop loss, and suppression of adjacent channels by over 30 dB.

SELECTION OF CITATIONS
SEARCH DETAIL
...