Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Digit Med ; 7(1): 189, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014005

ABSTRACT

Virtual patients and digital patients/twins are two similar concepts gaining increasing attention in health care with goals to accelerate drug development and improve patients' survival, but with their own limitations. Although methods have been proposed to generate virtual patient populations using mechanistic models, there are limited number of applications in immuno-oncology research. Furthermore, due to the stricter requirements of digital twins, they are often generated in a study-specific manner with models customized to particular clinical settings (e.g., treatment, cancer, and data types). Here, we discuss the challenges for virtual patient generation in immuno-oncology with our most recent experiences, initiatives to develop digital twins, and how research on these two concepts can inform each other.

2.
Article in English | MEDLINE | ID: mdl-38858306

ABSTRACT

Recently, immunotherapies for antitumoral response have adopted conditionally activated molecules with the objective of reducing systemic toxicity. Amongst these are conditionally activated antibodies, such as PROBODY® activatable therapeutics (Pb-Tx), engineered to be proteolytically activated by proteases found locally in the tumor microenvironment (TME). These PROBODY® therapeutics molecules have shown potential as PD-L1 checkpoint inhibitors in several cancer types, including both effectiveness and locality of action of the molecule as shown by several clinical trials and imaging studies. Here, we perform an exploratory study using our recently published quantitative systems pharmacology model, previously validated for triple-negative breast cancer (TNBC), to computationally predict the effectiveness and targeting specificity of a PROBODY® therapeutics drug compared to the non-modified antibody. We begin with the analysis of anti-PD-L1 immunotherapy in non-small cell lung cancer (NSCLC). As a first contribution, we have improved previous virtual patient selection methods using the omics data provided by the iAtlas database portal compared to methods previously published in literature. Furthermore, our results suggest that masking an antibody maintains its efficacy while improving the localization of active therapeutic in the TME. Additionally, we generalize the model by evaluating the dependence of the response to the tumor mutational burden, independently of cancer type, as well as to other key biomarkers, such as CD8/Treg Tcell and M1/M2 macrophage ratio. While our results are obtained from simulations on NSCLC, our findings are generalizable to other cancer types and suggest that an effective and highly selective conditionally activated PROBODY® therapeutics molecule is a feasible option.

3.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38557676

ABSTRACT

Understanding the intricate interactions of cancer cells with the tumor microenvironment (TME) is a pre-requisite for the optimization of immunotherapy. Mechanistic models such as quantitative systems pharmacology (QSP) provide insights into the TME dynamics and predict the efficacy of immunotherapy in virtual patient populations/digital twins but require vast amounts of multimodal data for parameterization. Large-scale datasets characterizing the TME are available due to recent advances in bioinformatics for multi-omics data. Here, we discuss the perspectives of leveraging omics-derived bioinformatics estimates to inform QSP models and circumvent the challenges of model calibration and validation in immuno-oncology.


Subject(s)
Neoplasms , Pharmacology , Humans , Multiomics , Network Pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Medical Oncology , Computational Biology , Tumor Microenvironment
4.
ArXiv ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38495562

ABSTRACT

Virtual patients and digital patients/twins are two similar concepts gaining increasing attention in health care with goals to accelerate drug development and improve patients' survival, but with their own limitations. Although methods have been proposed to generate virtual patient populations using mechanistic models, there are limited number of applications in immuno-oncology research. Furthermore, due to the stricter requirements of digital twins, they are often generated in a study-specific manner with models customized to particular clinical settings (e.g., treatment, cancer, and data types). Here, we discuss the challenges for virtual patient generation in immuno-oncology with our most recent experiences, initiatives to develop digital twins, and how research on these two concepts can inform each other.

5.
CPT Pharmacometrics Syst Pharmacol ; 13(1): 93-105, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38058278

ABSTRACT

Conditionally activated molecules, such as Probody therapeutics (PbTx), have recently been investigated to improve antitumoral response while reducing systemic toxicity. PbTx are engineered to be proteolytically activated by proteases that are preferentially active locally in the tumor microenvironment (TME). Here, we perform an exploratory study using our recently published quantitative systems pharmacology model, previously validated for other drugs, to evaluate the effectiveness and targeting specificity of an anti-PD-L1 PbTx compared to the non-modified antibody. We have informed the model using the PbTx dynamics and pharmacokinetics published in the literature for anti-PD-L1 in patients with triple-negative breast cancer (TNBC). Our results suggest masking of the antibody slightly decreases its efficacy, while increasing the localization of active therapeutic component in the TME. We also perform a parameter optimization for the PbTx design and drug dosing regimens to maximize the response rate. Although our results are specific to the case of TNBC, our findings are generalizable to any conditionally activated PbTx molecule in solid tumors and suggest that design of a highly effective and selective PbTx is feasible.


Subject(s)
B7-H1 Antigen , Triple Negative Breast Neoplasms , Humans , Antibodies/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Immunity , Network Pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
6.
Acta Biomater ; 163: 158-169, 2023 06.
Article in English | MEDLINE | ID: mdl-34808415

ABSTRACT

Contact guidance, the widely-known phenomenon of cell alignment, is an essential step in the organization of adherent cells. This guidance is known to occur by, amongst other things, anisotropic features in the environment including elastic heterogeneity. To understand the origins of this guidance we employed a novel statistical thermodynamics framework, which recognises the non-thermal fluctuations in the cellular response, for modelling the response of the cells seeded on substrates with alternating soft and stiff stripes. Consistent with observations, the modelling framework predicts the existence of three regimes of cell guidance: (i) in regime I for stripe widths much larger than the cell size guidance is primarily entropic; (ii) for stripe widths on the order of the cell size in regime II guidance is biochemically mediated and accompanied by changes to the cell morphology while (iii) in regime III for stripe widths much less than the cell size there is no guidance as cells cannot sense the substrate heterogeneity. Guidance in regimes I and II is due to "molli-avoidance" with cells primarily residing on the stiff stripes. While the molli-avoidance tendency is not lost with decreasing density of collagen coating the substrate, the reduced focal adhesion formation with decreasing collagen density tends to inhibit contact guidance. Our results provide clear physical insights into the interplay between cell mechano-sensitivity and substrate elastic heterogeneity that ultimately leads to the contact guidance of cells in heterogeneous tissues. STATEMENT OF SIGNIFICANCE: Cellular morphology and organization play a crucial role in the micro-architecture of tissues and dictates their biological and mechanical functioning. Despite the importance of cellular organization in all facets of tissue biology, the fundamental question of how a cell organizes itself in an anisotropic environment is still poorly understood. We employ a novel statistical thermodynamics framework which recognises the non-thermal fluctuations in the cellular response to investigate cell guidance on substrates with alternating soft and stiff stripes. The propensity of cells to primarily reside on stiff stripes results in strong guidance when the period of the stripes is larger than the cell size. For smaller stripe periods, cells sense a homogeneous substrate and guidance is lost.


Subject(s)
Cell Communication , Collagen , Elasticity , Collagen/metabolism , Actin Cytoskeleton/metabolism , Thermodynamics
7.
Biophys J ; 121(22): 4394-4404, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36004781

ABSTRACT

Cell-cell interaction dictates cell morphology and organization, which play a crucial role in the micro-architecture of tissues that guides their biological and mechanical functioning. Here, we investigate the effect of cell density on the responses of cells seeded on flat substrates using a novel statistical thermodynamics framework. The framework recognizes the existence of nonthermal fluctuations in cellular response and thereby naturally captures entropic interactions between cells in monolayers. In line with observations, the model predicts that cell area and elongation decrease with increasing cell seeding density-both are a direct outcome of the fluctuating nature of the cellular response that gives rise to enhanced cell-cell interactions with increasing cell crowding. The modeling framework also predicts the increase in cell alignment with increasing cell density: this cellular ordering is also due to enhanced entropic interactions and is akin to nematic ordering in liquid crystals. Our simulations provide physical insights that suggest that entropic cell-cell interactions play a crucial role in governing the responses of cell monolayers.


Subject(s)
Liquid Crystals , Entropy , Thermodynamics , Liquid Crystals/chemistry
8.
Biomech Model Mechanobiol ; 21(4): 1043-1065, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35477826

ABSTRACT

Adherent cells seeded on substrates spread and evolve their morphology while simultaneously displaying motility. Phenomena such as contact guidance, viz. the alignment of cells on patterned substrates, are strongly linked to the coupling of morphological evolution with motility. Here, we employ a recently developed statistical thermodynamics framework for modelling the non-thermal fluctuating response of cells to probe this coupling. This thermodynamic framework is first extended via a Langevin style model to predict temporal responses of cells to unpatterned and patterned substrates. The Langevin model is then shown to not only predict the different experimentally observed temporal scales for morphological observables such as cell area and elongation but also the interplay of morphology with motility that ultimately leads to contact guidance.


Subject(s)
Cell Communication , Thermodynamics
9.
PNAS Nexus ; 1(5): pgac199, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36712366

ABSTRACT

Cyclic strain avoidance, the phenomenon of cell and cytoskeleton alignment perpendicular to the direction of cyclic strain of the underlying 2D substrate, is an important characteristic of the adherent cell organization. This alignment has typically been attributed to the stress-fiber reorganization although observations clearly show that stress-fiber reorganization under cyclic loading is closely coupled to cell morphology and reorientation of the cells. Here, we develop a statistical mechanics framework that couples the cytoskeletal stress-fiber organization with cell morphology under imposed cyclic straining and make quantitative comparisons with observations. The framework accurately predicts that cyclic strain avoidance stems primarily from cell reorientation away from the cyclic straining rather than cytoskeletal reorganization within the cell. The reorientation of the cell is a consequence of the cell lowering its free energy by largely avoiding the imposed cyclic straining. Furthermore, we investigate the kinetics of the cyclic strain avoidance mechanism and demonstrate that it emerges primarily due to the rigid body rotation of the cell rather than via a trajectory involving cell straining. Our results provide clear physical insights into the coupled dynamics of cell morphology and stress-fibers, which ultimately leads to cellular organization in cyclically strained tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...