Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(8): e10426, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37575590

ABSTRACT

Multisensory stimuli provide organisms with information to assess the threat present in the surroundings. Olfactory cues show dominance over other sensory modalities in the aquatic environment. The impact of chemical predator cues combined with experiences gained (learning) in species without previous contact is not fully understood. We investigated the foraging and shelter-seeking behaviour of naïve and experienced marbled crayfish Procambarus virginalis juveniles in response to the chemical signals of pumpkinseed Lepomis gibbosus alone and in combination with alarm chemicals produced by preyed-upon conspecifics. Naïve and experienced (previously exposed to pumpkinseed predation) juveniles were stocked in an arena with shelter and feed and exposed (1) to water from a tank containing a predator actively feeding on conspecifics, (2) water from a tank with predator only and (3) water only as control. Crayfish exposed to the combined stimuli avoided the inlet zone and gravitated to shelter zone of the arena to a greater extent than did those exposed to predator-only cues and the control. Regardless of the treatment, experienced crayfish showed significantly reduced interest in feeding. Our findings imply that crayfish response to threat-associated odours with the greatest potency when visual or tactile cues are present, while previous encounters with predators may make them more cautious.

2.
Ecotoxicol Environ Saf ; 260: 115084, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37267780

ABSTRACT

Pharmaceutically active compounds are common and increasing in the aquatic environment. Evidence suggests they have adverse effects on non-target organisms, and they are classified as emerging pollutants for a variety of aquatic organisms. To determine the effects of environmentally relevant levels of psychoactive compounds on non-target organisms, we analyzed cardiac and locomotory activity in early developmental stages of marbled crayfish Procambarus virginalis. Responses to sertraline, methamphetamine, and a mixture of citalopram, oxazepam, sertraline, tramadol, venlafaxine, and methamphetamine at a concentration of 1 µg L-1 of each compound were assessed. On day four of exposure, cardiac activity was recorded for 5 min, and on day eight, locomotory activity was recorded for 15 min. There was a significant increase (p < 0.01) in heart rate in methamphetamine-exposed and Mix-exposed juveniles compared to the unexposed control and there was significant difference (p < 0.01) in proportion of time (activity %) was observed with sertraline-exposed, whereas velocity, and distance moved did not significantly differ (p > 0.05) in exposed and control animals. These findings revealed that low concentrations of chemicals and their mixtures can modify the physiological state of aquatic animals without outward manifestations (activity, distance moved, and velocity). Aquatic animals can be impacted earlier than is visible, but effects can potentially lead to substantial changes in populations and in ecosystem processes. Additional research to investigate chemical combinations, exposure systems, and organism physiological and molecular responses may provide evidence of broad impact of environmental pharmaceuticals.


Subject(s)
Methamphetamine , Water Pollutants, Chemical , Animals , Astacoidea/physiology , Ecosystem , Sertraline , Methamphetamine/pharmacology , Locomotion , Water Pollutants, Chemical/pharmacology
4.
Antioxidants (Basel) ; 11(8)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36009347

ABSTRACT

Plants coevolved with their antioxidant defense systems, which detoxify and adjust levels of reactive oxygen species (ROS) under multiple plant stresses. We performed whole-genome identification of ascorbate peroxidase (APX) and catalase (CAT) families in cultivated and wild soybeans. In cultivated and wild soybean genomes, we identified 11 and 10 APX genes, respectively, whereas the numbers of identified CAT genes were four in each species. Comparative phylogenetic analysis revealed more homology among cultivated and wild soybeans relative to other legumes. Exon/intron structure, motif and synteny blocks are conserved in cultivated and wild species. According to the Ka/Ks value, purifying selection is a major force for evolution of these gene families in wild soybean; however, the APX gene family was evolved by both positive and purifying selection in cultivated soybean. Segmental duplication was a major factor involved in the expansion of APX and CAT genes. Expression patterns revealed that APX and CAT genes are differentially expressed across fourteen different soybean tissues under water deficit (WD), heat stress (HS) and combined drought plus heat stress (WD + HS). Altogether, the current study provides broad insights into these gene families in soybeans. Our results indicate that APX and CAT gene families modulate multiple stress response in soybeans.

5.
PLoS Pathog ; 18(1): e1010219, 2022 01.
Article in English | MEDLINE | ID: mdl-35025971

ABSTRACT

Excessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously. We evaluated effects of endogenous itaconate and exogenous application of itaconate and its variants dimethyl- and 4-octyl-itaconate (DI, 4OI) on host responses to influenza A virus (IAV). Infection induced expression of ACOD1, the enzyme catalyzing itaconate synthesis, in monocytes and macrophages, which correlated with viral replication and was abrogated by DI and 4OI treatment. In IAV-infected mice, pulmonary inflammation and weight loss were greater in Acod1-/- than in wild-type mice, and DI treatment reduced pulmonary inflammation and mortality. The compounds reversed infection-triggered interferon responses and modulated inflammation in human cells supporting non-productive and productive infection, in peripheral blood mononuclear cells, and in human lung tissue. All three itaconates reduced ROS levels and STAT1 phosphorylation, whereas AKT phosphorylation was reduced by 4OI and DI but increased by itaconate. Single-cell RNA sequencing identified monocytes as the main target of infection and the exclusive source of ACOD1 mRNA in peripheral blood. DI treatment silenced IFN-responses predominantly in monocytes, but also in lymphocytes and natural killer cells. Ectopic synthesis of itaconate in A549 cells, which do not physiologically express ACOD1, reduced infection-driven inflammation, and DI reduced IAV- and IFNγ-induced CXCL10 expression in murine macrophages independent of the presence of endogenous ACOD1. The compounds differed greatly in their effects on cellular gene homeostasis and released cytokines/chemokines, but all three markedly reduced release of the pro-inflammatory chemokines CXCL10 (IP-10) and CCL2 (MCP-1). Viral replication did not increase under treatment despite the dramatically repressed IFN responses. In fact, 4OI strongly inhibited viral transcription in peripheral blood mononuclear cells, and the compounds reduced viral titers (4OI>Ita>DI) in A549 cells whereas viral transcription was unaffected. Taken together, these results reveal itaconates as immunomodulatory and antiviral interventions for influenza virus infection.


Subject(s)
Influenza A virus/immunology , Macrophages/immunology , Orthomyxoviridae Infections/drug therapy , Succinates/pharmacology , A549 Cells , Animals , Carboxy-Lyases/deficiency , Carboxy-Lyases/immunology , Cytokines/genetics , Cytokines/immunology , Humans , Macrophages/virology , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , THP-1 Cells
6.
Proc Natl Acad Sci U S A ; 116(41): 20644-20654, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31548418

ABSTRACT

cis-Aconitate decarboxylase (CAD, also known as ACOD1 or Irg1) converts cis-aconitate to itaconate and plays central roles in linking innate immunity with metabolism and in the biotechnological production of itaconic acid by Aspergillus terreus We have elucidated the crystal structures of human and murine CADs and compared their enzymological properties to CAD from A. terreus Recombinant CAD is fully active in vitro without a cofactor. Murine CAD has the highest catalytic activity, whereas Aspergillus CAD is best adapted to a more acidic pH. CAD is not homologous to any known decarboxylase and appears to have evolved from prokaryotic enzymes that bind negatively charged substrates. CADs are homodimers, the active center is located in the interface between 2 distinct subdomains, and structural modeling revealed conservation in zebrafish and Aspergillus We identified 8 active-site residues critical for CAD function and rare naturally occurring human mutations in the active site that abolished CAD activity, as well as a variant (Asn152Ser) that increased CAD activity and is common (allele frequency 20%) in African ethnicity. These results open the way for 1) assessing the potential impact of human CAD variants on disease risk at the population level, 2) developing therapeutic interventions to modify CAD activity, and 3) improving CAD efficiency for biotechnological production of itaconic acid.


Subject(s)
Carboxy-Lyases/chemistry , Carboxy-Lyases/genetics , Mutation , Succinates/metabolism , A549 Cells , Amino Acid Sequence , Animals , Carboxy-Lyases/metabolism , Catalysis , Catalytic Domain , Crystallography, X-Ray , Evolution, Molecular , Humans , Mice , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Sequence Homology
7.
Front Microbiol ; 9: 526, 2018.
Article in English | MEDLINE | ID: mdl-29623073

ABSTRACT

The 2009 pandemic influenza A virus (IAV) H1N1 strain (H1N1pdm09) has widely spread and is circulating in humans and swine together with other human and avian IAVs. This fact raises the concern that reassortment between H1N1pdm09 and co-circulating viruses might lead to an increase of H1N1pdm09 pathogenicity in different susceptible host species. Herein, we explored the potential of different NS segments to enhance the replication dynamics, pathogenicity and host range of H1N1pdm09 strain A/Giessen/06/09 (Gi-wt). The NS segments were derived from (i) human H1N1- and H3N2 IAVs, (ii) highly pathogenic- (H5- or H7-subtypes) or (iii) low pathogenic avian influenza viruses (H7- or H9-subtypes). A significant increase of growth kinetics in A549 (human lung epithelia) and NPTr (porcine tracheal epithelia) cells was only noticed in vitro for the reassortant Gi-NS-PR8 carrying the NS segment of the 1918-descendent A/Puerto Rico/8/34 (PR8-wt, H1N1), whereas all other reassortants showed either reduced or comparable replication efficiencies. Analysis using ex vivo tracheal organ cultures of turkeys (TOC-Tu), a species susceptible to IAV H1N1 infection, demonstrated increased replication of Gi-NS-PR8 compared to Gi-wt. Also, Gi-NS-PR8 induced a markedly higher expression of immunoregulatory and pro-inflammatory cytokines, chemokines and interferon-stimulated genes in A549 cells, THP-1-derived macrophages (dHTP) and TOC-Tu. In vivo, Gi-NS-PR8 induced an earlier onset of mortality than Gi-wt in mice, whereas, 6-week-old chickens were found to be resistant to both viruses. These data suggest that the specific characteristics of the PR8 NS segments can impact on replication, virus induced cellular immune responses and pathogenicity of the H1N1pdm09 in different avian and mammalian host species.

8.
South Med J ; 101(1): 83-7, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18176298

ABSTRACT

Mounier-Kuhn syndrome is a rare congenital abnormality characterized by atrophy or absence of elastic fibers and thinning of smooth muscle layer in the trachea and main bronchi. These airways are thus flaccid and markedly dilated on inspiration and collapsed on expiration. First- to fourth-order bronchi are affected. There is an increase in dead space, tidal volume and diminished clearing of secretions. The usual presentation is recurrent respiratory tract infections with a broad spectrum of functional impairment ranging from minimal disease with preservation of lung function to severe disease in the form of bronchiectasis, emphysema and pulmonary fibrosis, ultimately culminating in respiratory failure and death. A congenital connective tissue weakness, in combination with inhalation of irritants like cigarette smoke and air pollution, are raised as possible factors in the development of this syndrome. Eight cases of tracheobronchomegaly with its associated complications are reported. Computed tomography scan of the chest was used for the diagnosis of tracheobronchomegaly. Treatment is mainly supportive with chest physiotherapy and antibiotics; however, there are a few reported cases where insertion of a tracheal stent resulted in some success.


Subject(s)
Pulmonary Disease, Chronic Obstructive/etiology , Respiratory Tract Infections/etiology , Tracheobronchomegaly/complications , Adult , Aged , Bronchography , Forced Expiratory Volume , Humans , Lung/diagnostic imaging , Male , Middle Aged , Physical Therapy Modalities , Spirometry , Tomography, X-Ray Computed , Trachea/diagnostic imaging , Tracheobronchomegaly/diagnosis , Tracheobronchomegaly/physiopathology , Tracheobronchomegaly/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...