Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34578527

ABSTRACT

Designing novel antiviral personal protective equipment (PPE) is crucial for preventing viral infections such as COVID-19 in humans. Here, we fabricate an electrospun nanofiber-based Viroblock (VB)-loaded polyacrylonitrile (PAN)/zinc oxide (ZnO) hybrid nanocomposite for PPE applications. Five different concentrations of Viroblock (0.5%, 1.5%, 2.5%, 3.5%, and 5%) were added to PAN/ZnO solution and loaded for electrospinning. The developed samples reflected antibacterial activity of 92.59% and 88.64% against Staphylococcus aureus and Pseudomonas aeruginosa bacteria, respectively, with 5% VB loading. Moreover, a significant reduction in virus titer (37%) was observed with the 5% VB/PAN/ZnO nanofiber sheet. Hence, VB-loaded PAN/ZnO nanofibers have great potential to kill enveloped viruses such as influenzas and coronaviruses and could be the ideal candidate for the development of nanofiber-based PPE, such as facemasks and surgical gowns, which can play a key role in the protection of frontline health workers and the general public in the COVID-19 pandemic.

2.
Chem Phys Lipids ; 239: 105115, 2021 09.
Article in English | MEDLINE | ID: mdl-34252425

ABSTRACT

The increase in antimicrobial resistance has created a crisis that has become top priority for global policy and public health. Antibiotics are constantly being rendered in-effective due to the emergence of bacterial resistance; therefore, novel strategies for improving therapeutic efficacies of existing drugs must be focused. Advancements in nanotechnology have opened up new avenues for enhancing therapeutic efficacy of existing drugs via construction of intelligent and efficient delivery systems. This study reports the synthesis of Dapsone based nonionic surfactant and its utilization as delivery system for Ceftriaxone sodium. The synthesized nonionic surfactant was characterized via mass spectrometry and 1H NMR and IR spectroscopic techniques. The drug loaded vesicles of newly synthesized sulfur based nonionic were formed through thin film hydration method and characterized for drug entrapment efficiency, vesicles size, zeta potential, morphology using UV-vis spectrometry, dynamic light scattering (DLS) and atomic force microscopic (AFM) techniques. The biocompatibility of newly synthesized surfactant was assessed using blood hemolysis and in-vitro cells cytotoxicity. Antibacterial potential of drug loaded vesicles was assessed in gram positive and gram negative bacterial cultures. The spectroscopic results confirm successful synthesis of novel sulfur based nonionic surfactant that formed spherical shaped drug loaded vesicles with an average size of 97.95 ± 3.45 nm and 56.3 ± 3.15 % entrapment of the model drug (Ceftriaxone sodium). The vesicles displayed negative surface charge of -16.8 ± 3.72 mV and released the entrapped drug in a controlled way in-vitro drug release. The drug loaded vesicular formulation showed enhanced cellular uptake and greater antibacterial potentials when compared with control. Results of this study show that the Dapsone based surfactant is safe, biocompatible, non-toxic and can be used as promising vesicular carrier for enhancing therapeutic efficacy of antibacterial drug, Ceftriaxone sodium.


Subject(s)
Biocompatible Materials/chemistry , Dapsone/chemistry , Drug Carriers/chemical synthesis , Surface-Active Agents/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Biofilms/drug effects , Dapsone/metabolism , Dapsone/pharmacology , Drug Carriers/chemistry , Drug Liberation , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/physiology , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/physiology , Hemolysis/drug effects , Humans , Micelles , Microbial Sensitivity Tests , Particle Size , Sulfur/chemistry
3.
Pharmaceutics ; 12(6)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481715

ABSTRACT

The present study aims at the development, characterization, biocompatibility investigation and oral bioavailability evaluation of ceftriaxone (CFT)-loaded N'-methacryloylisonicotinohydrazide (MIH)-functionalized magnetic nanoparticles (CFT-MIH-MNPs). Atomic force microscopy (AFM) and dynamic light scattering (DLS) showed that the developed CFT loaded MIH-MNPs are spherical, with a measured hydrodynamic size of 184.0 ± 2.7 nm and negative zeta potential values (-20.2 ± 0.4 mV). Fourier transformed infrared spectroscopic (FTIR) analysis revealed interactions between the nanocarrier and the drug. Nanoparticles showed high drug entrapment efficiency (EE) of 79.4% ±1.5%, and the drug was released gradually in vitro and showed prolonged in vitro stability using simulated gastrointestinal tract (GIT) fluids. The formulations were found to be highly biocompatible (up to 100 µg/mL) and hemocompatible (up to 1.0 mg/mL). Using an albino rabbit model, the formulation showed a significant enhancement in drug plasma concentration up to 14.4 ± 1.8 µg/mL in comparison with its control (2.0 ± 0.6 µg/mL). Overall, the developed CFT-MIH-MNPs formulation was promising for provision of high drug entrapment, gradual drug release and suitability for enhancing the oral delivery of CFT.

4.
Antibiotics (Basel) ; 9(5)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466210

ABSTRACT

The pathogenic free-living amoeba, Acanthamoeba castellanii, is responsible for a rare but deadly central nervous system infection, granulomatous amoebic encephalitis and a blinding eye disease called Acanthamoeba keratitis. Currently, a combination of biguanides, amidine, azoles and antibiotics are used to manage these infections; however, the host cell cytotoxicity of these drugs remains a challenge. Furthermore, Acanthamoeba species are capable of transforming to the cyst form to resist chemotherapy. Herein, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with isoniazid, which were further loaded with amphotericin B (ISO-NPs-AMP) to cause potent antiamoebic effects against Acanthamoeba castellanii. The IC50 of isoniazid conjugated with magnetic nanoparticles and loaded with amphotericin B was found to be 45 µg/mL against Acanthamoeba castellanii trophozoites and 50 µg/mL against cysts. The results obtained in this study have promising implications in drug discovery as these nanomaterials exhibited high trophicidal and cysticidal effects, as well as limited cytotoxicity against rat and human cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...